Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832750

ABSTRACT

Dimerized quantum magnets are exotic crystalline materials where Bose-Einstein condensation of magnetic excitations can happen. However, known dimerized quantum magnets are limited to only a few oxides and halides. Here, we unveil 9 dimerized quantum magnets and 11 conventional antiferromagnets in ternary metal borides MTB4 (M = Sc, Y, La, Ce, Lu, Mg, Ca, and Al; T = V, Cr, Mn, Fe, Co, and Ni), where T atoms are arranged in structural dimers. Quantum magnetism in these compounds is dominated by strong antiferromagnetic (AFM) interactions between Cr (Cr and Mn for M = Mg and Ca) atoms within the dimers, with much weaker interactions between the dimers. These systems are proposed to be close to a quantum critical point between a disordered singlet spin-dimer phase, with a spin gap, and the ordered conventional Néel AFM phase. They greatly enrich the materials inventory that allows investigations of the spin-gap phase. Conventional antiferromagnetism in these compounds is dominated by ferromagnetic Mn (Fe for M = Mg and Ca) interactions within the dimers. The predicted stable and nonmagnetic (NM) YFeB4 phase is synthesized and characterized, providing a scarce candidate to study Fe dimers and Fe ladders in borides. The identified quantum, conventional, and NM systems provide a platform with abundant possibilities to tune the magnetic exchange coupling by doping and study the unconventional quantum phase transition and conventional magnetic transitions. This work opens new avenues for studying novel magnetism in borides arising from spin dimers and establishes a theoretical workflow for future searches for dimerized quantum magnets in other families of materials.

2.
J Am Chem Soc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606803

ABSTRACT

The low-temperature modification of ß-Ag2Se has proven to be useful as a near-room-temperature thermoelectric material. Over the past years, research has been devoted to interstitial, vacancy, and substitutional doping into the parent ß-Ag2Se structure, aiming at tuning the material's charge and heat transport properties to enhance thermoelectric performance. The transformation of ß-Ag2Se into α-Ag2Se at ∼134 °C and the low solubility of dopants are the main obstacles for the doping approach. Herein, we report a facile, safe, scalable, and cost-effective benchtop approach to successfully produce metal-doped ß-Ag2Se. The doped materials display a remarkable enhancement of thermoelectric performance with a record-high peak zT of 1.30 at 120 °C and an average zT of ∼1.15 in the 25-120 °C range for 0.2 at. % Zn-doped Ag2Se. The enhancement in zT is attributed to point defects created by Zn doping into Ag vacancies/interstitials, which enhances the scattering of phonons and tunes the charge carrier properties, leading to the significant suppression of thermal conductivity. The simplicity of the synthetic method developed herein and the high performance of the final products provide an avenue to produce high-quality Ag2Se-based thermoelectric materials.

3.
Sci Rep ; 13(1): 21004, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017241

ABSTRACT

Deep learning techniques have proven to be effective in solving the facial emotion recognition (FER) problem. However, it demands a significant amount of supervision data which is often unavailable due to privacy and ethical concerns. In this paper, we present a novel approach for addressing the FER problem using multi-source transfer learning. The proposed method leverages the knowledge from multiple data sources of similar domains to inform the model on a related task. The approach involves the optimization of aggregate multivariate correlation among the source tasks trained on the source dataset, thus controlling the transfer of information to the target task. The hypothesis is validated on benchmark datasets for facial emotion recognition and image classification tasks, and the results demonstrate the effectiveness of the proposed method in capturing the group correlation among features, as well as being robust to negative transfer and performing well in few-shot multi-source adaptation. With respect to the state-of-the-art methods MCW and DECISION, our approach shows an improvement of 7% and [Formula: see text]15% respectively.


Subject(s)
Facial Recognition , Benchmarking , Knowledge , Multivariate Analysis , Machine Learning
4.
ACS Appl Mater Interfaces ; 15(12): 15498-15508, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36940316

ABSTRACT

A simple and effective preparation of solution-processed chalcogenide thermoelectric materials is described. First, PbTe, PbSe, and SnSe were prepared by gram-scale colloidal synthesis relying on the reaction between metal acetates and diphenyl dichalcogenides in hexadecylamine solvent. The resultant phase-pure chalcogenides consist of highly crystalline and defect-free particles with distinct cubic-, tetrapod-, and rod-like morphologies. The powdered PbTe, PbSe, and SnSe products were subjected to densification by spark plasma sintering (SPS), affording dense pellets of the respective chalcogenides. Scanning electron microscopy shows that the SPS-derived pellets exhibit fine nano-/micro-structures dictated by the original morphology of the key constituting particles, while the powder X-ray diffraction and electron microscopy analyses confirm that the SPS-derived pellets are phase-pure materials, preserving the structure of the colloidal synthesis products. The resultant solution-processed PbTe, PbSe, and SnSe exhibit low thermal conductivity, which might be due to the enhanced phonon scattering developed over fine microstructures. For undoped n-type PbTe and p-type SnSe samples, an expected moderate thermoelectric performance is achieved. In contrast, an outstanding figure-of-merit of 0.73 at 673 K was achieved for undoped n-type PbSe outperforming, the majority of the optimized PbSe-based thermoelectric materials. Overall, our findings facilitate the design of efficient solution-processed chalcogenide thermoelectrics.

5.
J Am Chem Soc ; 145(8): 4638-4646, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36787623

ABSTRACT

The zinc-antimony phase space has been heavily investigated due to the structural complexity and abundance of high-performing thermoelectric materials. Consequentially, the desire to use zinc and antimony as framework elements to encage rattling cations and achieve phonon-glass-electron-crystal-type properties has remained an enticing goal with only two alkali metal clathrates to date, Cs8Zn18Sb28 and K58Zn122Sb207. Guided by Zintl electron-counting predictions, we explored the Ba-Zn-Pn (Pn = As, Sb) phase space proximal to the expected composition of the type-I clathrate. In situ powder X-ray diffraction studies revealed two "hidden" compounds which can only be synthesized in a narrow temperature range. The ex situ synthesis and crystal growth unveiled that instead of type-I clathrates, compositionally close but structurally different new clathrate-like compounds formed, Ba2Zn5As6 and Ba2Zn5Sb6. These materials crystallize in a unique structure, in the orthorhombic space group Pmna with the Wyckoff sequence i2h6gfe. Single-phase synthesis enabled the exploration of their transport properties. Rattling of the Ba cations in oversized cages manifested low thermal conductivity, which, coupled with the high Seebeck coefficients observed, are prerequisites for a promising thermoelectric material. Potential for further optimization of the thermoelectric performance by aliovalent doping was computationally analyzed.

6.
Dalton Trans ; 51(11): 4522-4531, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35234231

ABSTRACT

Three ternary thiophosphates α-Ba2P2S6, ß-Ba2P2S6, and Pb2P2S6 were synthesized via a high temperature salt flux method or an I2 transport reaction. ß-Ba2P2S6 and Pb2P2S6 were previously structurally characterized without investigating their optical properties. α-Ba2P2S6 was discovered for the first time, and it is isostructural to Pb2P2S6 and crystallizes in the acentric space group Pn (no. 7). ß-Ba2P2S6 crystallizes in the centrosymmetric space group P21/n (no. 14). There is a high structural similarity between α-Ba2P2S6, ß-Ba2P2S6, and Pb2P2S6 including close unit cell parameters and identical [P2S6] motifs. The structural relationships between α-Ba2P2S6 and ß-Ba2P2S6, and ß-Ba2P2S6 and Pb2P2S6 were elucidated by single crystal X-ray diffraction, differential scanning calorimetry (DSC), electronic structure calculations, and nonlinear optical property measurements. There are no phase transitions detected between α-Ba2P2S6 and ß-Ba2P2S6. From centrosymmetric ß-Ba2P2S6 to acentric Pb2P2S6, the chemical characteristics of Pb, such as stereoactive lone pairs, play a key role in the structural difference. Pb2P2S6 is uncovered as a type-I phase-matching material with a moderate second harmonic generation (SHG) response of 1.4 × AgGaS2 and a high laser damage threshold (LDT) of 2.5 × AgGaS2. α-Ba2P2S6 is not a type-I phase-matching material with a moderate second harmonic generation response (1.7 × AgGaS2, a sample of 225 µm particle size) and a high laser damage threshold (5.5 × AgGaS2).

7.
Nanoscale ; 11(9): 4001-4007, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30768107

ABSTRACT

Two-dimensional (2D) perovskites recently attracted significant interest due to their unique and novel optoelectronic properties. CsPb2Br5, a 2D inorganic perovskite halide, is an indirect band gap semiconductor, and hence it is not supposed to be luminescent. However, a fundamental understanding of the origin of its luminescence properties is still lacking as there are contradictory literature reports present concerning its luminescence properties. Here, we demonstrate a single pot solution based transformation of 2D CsPb2Br5 nanosheets from the nanocrystals of 3D CsPbBr3 and investigate the origin of its luminescence properties by detailed experiments and density functional theory (DFT) calculations. The photoluminescence of CsPb2Br5 originates from the different amorphous lead bromide ammonium complexes which are present at the surface of the nanosheets. We have also highlighted the formation mechanism of 2D nanosheets from 3D CsPbBr3 nanocrystals. These combined theoretical and experimental studies offer significant insights into the optical properties and formation mechanism of 2D CsPb2Br5 perovskites.

8.
Inorg Chem ; 57(24): 15558-15565, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30475604

ABSTRACT

The discovery of new two-dimensional (2D) perovskite halides has created sensation recently because of their structural diversity and intriguing optical properties. The toxicity of Pb-based perovskite halides led to the development of Pb-free halides. Herein, we have demonstrated a one-pot solution-based synthesis of 2D ultrathin (∼1.78 nm) few-layer (2-4 layers) nanoplates (300-600 nm lateral dimension), nanosheets (0.6-1.5 µm), and nanocrystals of layered Cs3Bi2I9 by varying the reaction temperature from 110 to 180 °C. We have established a mechanistic pathway for the variation of morphology of Cs3Bi2I9 with temperature in the presence of organic capping ligands. Further, we have synthesized the bulk powder of Cs3Bi2I9 by mechanochemical synthesis and liquid-assisted grinding and crystalline ingot by vacuum-sealed tube melting. 2D nanoplates and bulk Cs3Bi2I9 demonstrate optical absorption edge along with excitonic transition. Photoluminescence properties of individual nanoplates were studied by super-resolution fluorescence imaging, which indicated the blinking behavior down to the level of an individual Cs3Bi2I9 nanoplate along with its emission at the far-red region and high photostability.

9.
Chemistry ; 24(8): 1811-1815, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29293285

ABSTRACT

All-inorganic and hybrid perovskite type halides are generally synthesized by solution-based methods, with the help of long chain organic capping ligands, complex organometallic precursors, and high boiling organic solvents. Herein, a room temperature, solvent-free, general, and scalable all-solid-state mechanochemical synthesis is demonstrated for different inorganic perovskite type halides, with versatile structural connectivity in three (3D), two (2D), and zero (0D) dimensions. 3D CsPbBr3 , 2D CsPb2 Br5 , 0D Cs4 PbBr6 , 3D CsPbCl3 , 2D CsPb2 Cl5 , 0D Cs4 PbCl6 , 3D CsPbI3 , and 3D RbPbI3 have all been synthesized by this method. The all-solid-state synthesis is materialized through an inorganic retrosynthetic approach, which directs the decision on the solid-state precursors (e.g., CsX and PbX2 (X=Cl/Br/I) with desired stoichiometric ratios. Moreover, post-synthetic structural transformations from 3D to 2D and 0D perovskite halides were performed by the same mechanochemical synthetic approach at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...