Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 41(4): 687-698, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519814

ABSTRACT

OBJECTIVE: To assess the pharmacokinetic profile, in-vivo toxicity, and efficacy of 9-Fluorenylmethoxycarbonyl-L-phenylalanine (Fmoc-F) as a potential antibacterial agent, with a focus on its suitability for clinical translation. METHODS: An RP-HPLC-based bio-analytical method was developed and qualified to quantify Fmoc-F levels in mouse plasma for pharmacokinetic analysis. Oral bioavailability was determined, and in-vivo toxicity was evaluated following intra-peritoneal administration. Efficacy was assessed by measuring the reduction in Staphylococcus aureus burden and survival rates in BALB/c mice. RESULTS: The RP-HPLC method is highly sensitive, detecting as low as 0.8 µg mL-1 (~ 2 µM) of Fmoc-F in blood plasma. This study revealed that Fmoc-F has an oral bioavailability of 65 ± 18% and suitable pharmacokinetic profile. Further, we showed that intra-peritoneal administration of Fmoc-F is well tolerated by BALB/c mice and Fmoc-F treatment (100 mg/kg, i.p.) significantly reduces Staphylococcus aureus burden from visceral organs in BALB/c mice but falls short in enhancing survival rates at higher bacterial loads. CONCLUSIONS: The study provides crucial insights into the pharmacokinetic and pharmacodynamic properties of Fmoc-F. The compound displayed favourable oral bioavailability and in-vivo tolerance. Its significant reduction of bacterial burden underscores its potential as a treatment for systemic infections. However, limited effectiveness for severe infections, short half-life, and inflammatory response at higher doses need to be addressed for its clinical application.


Subject(s)
Anti-Bacterial Agents , Phenylalanine , Animals , Mice , Phenylalanine/pharmacology , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid , Bacteria , Biological Availability
2.
Neurosci Lett ; 825: 137706, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38431040

ABSTRACT

INTRODUCTION: Levodopa-induced dyskinesia (LID) is a debilitating motor feature in a subset of patients with Parkinson's disease (PD) after prolonged therapeutic administration of levodopa. Preliminary animal and human studies are suggestive of a key role of dopamine type 3 (D3) receptor polymorphism (Ser9Gly; rs6280) in LID. Its contribution to development of LID among Indian PD patients has remained relatively unexplored and merits further investigation. METHODS AND MATERIALS: 200 well-characterised PD patients (100 without LID and 100 with LID) and 100 age-matched healthy controls were recruited from the outpatient department of Institute of Neurosciences Kolkata. MDS-UPDRS (Unified Parkinson's Disease Rating Scale from International Movement Disorder Society) Part III and AIMS (abnormal involuntary movement scale) were performed for estimation of severity of motor features and LID respectively in the ON state of the disease. Participants were analysed for the presence of Ser9Gly single nucleotide variant (SNV) (rs6280) by polymerase chain reaction followed by restriction fragment length polymorphism techniques. RESULTS: The frequency of AA genotype (serine type) was more frequently present in PD patients with LID compared to PD patients without LID (50 % vs 28 %; P = 0.002; OR = 2.57, 95 % CI: 1.43 - 4.62). The abnormal involuntary movement scale score was significantly higher in PD patients with AA genotype compared to carriers of glycine allele (AG + GG) (4.08 ± 3.35; P = 0.002). CONCLUSION: We observed a significant association of serine type SNV (rs6280) in D3 receptor gene in a cohort of PD patients with LID from India. More severe motor severity was found in patients with glycine substitution of the same SNV. The current study emphasised the role of D3 receptor in the pathogenesis of LID.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Animals , Humans , Antiparkinson Agents/therapeutic use , Dyskinesia, Drug-Induced/genetics , Dyskinesia, Drug-Induced/drug therapy , Glycine , Levodopa/adverse effects , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Receptors, Dopamine D3/genetics , Serine/genetics
3.
Can J Neurol Sci ; 51(1): 104-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36660782

ABSTRACT

BACKGROUND: Pathophysiology of levodopa-induced dyskinesia (LID) remains obscure. Increased dopamine metabolism due to prolonged levodopa treatment can exacerbate oxidative damage and neuroinflammatory pathology in Parkinson's disease (PD). Association of novel peripheral markers with LID severity might provide insight into LID pathomechanisms. OBJECTIVE: We aimed to study specific peripheral blood inflammatory-oxidative markers in LID patients and investigate their association with clinical severity of LID. METHOD: Motor, non-motor and cognitive changes in PD with and without LID compared to healthy-matched controls were identified. Within the same cohort, inflammatory marker (sLAG3, TOLLIP, NLRP3 and IL-1ß) levels and antioxidant enzyme activities were determined by ELISA and spectrophotometric methods. RESULTS: LID patients showed distinctly upregulated TOLLIP, IL-1ß levels with significant diminution of antioxidant activity compared to controls. Significant negative association of cognitive markers with oxidative changes was also observed. CONCLUSION: To our understanding, this is the first study that indicates the involvement of toll-like receptor-mediated distinct and low-grade inflammatory activation in LID pathophysiology.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Levodopa/adverse effects , Parkinson Disease/drug therapy , Antiparkinson Agents/therapeutic use , Dyskinesia, Drug-Induced/etiology , Biomarkers , Oxidative Stress
4.
Ann Indian Acad Neurol ; 26(2): 174-181, 2023.
Article in English | MEDLINE | ID: mdl-37179670

ABSTRACT

Objective: Environmental influence and dietary variations are well-known risk factors for various diseases including neurodegenerative disorders. Preliminary evidence suggests that diet in early-life and living environment might influence the incidence of Parkinson's disease (PD) in later phase of life. There have been limited epidemiologic studies on this aspect especially in India. In this hospital-based case-control study, we intended to identify dietary and environmental risk factors of PD. Methods: Patients with PD (n = 105), Alzheimer's disease (AD) (n = 53) and healthy individuals (n = 81) were recruited. Dietary intake and environmental exposures were assessed using a validated Food-Frequency and Environmental Hazard Questionnaire. Their demographic details and living environment were also recorded using the same questionnaire. Results: Pre-morbid consumption of carbohydrate and fat was significantly higher whereas dietary fiber and fruit content was significantly lesser in PD as compared to AD and healthy age-matched controls. Meat and milk intake was the highest among all the food groups in PD patients. Rural living and their habitation near water bodies were significantly more frequent in PD patients. Conclusion: We found that past intake of carbohydrate, fat, milk, and meat are associated with increased risk of PD. On the other hand, rural living and habitat near water bodies might be associated with incidence and severity of PD. Hence, preventive strategies related to dietary and environmental modulators in PD might be clinically useful in the future.

5.
Environ Sci Pollut Res Int ; 30(16): 45977-45985, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36715808

ABSTRACT

Effective building energy management systems need a reliable approach to estimating future energy needs using renewable energy sources. However, nonlinear and nonstationary trends in building energy use data make prediction more challenging for integrating the photovoltaic system. To estimate future energy forecast, this work presents a hybrid approach based on random forest (RF) and long short-term memory (LSTM) using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Initial steps in our suggested procedure include utilizing CEEMDAN to translate the raw energy usage data into multiple components. Then, the component with the most significant frequency is predicted using RF, and the other components are forecasted using hybrid LSTM. Finally, all of the individual parts' predictions are combined to form a whole. Real-world output energy usage data has been predicted to test the suggested strategy. Results from the experiments show that the suggested strategy outperforms the reference methods.


Subject(s)
Random Forest , Forecasting
6.
Neurosci Lett ; 786: 136819, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35905887

ABSTRACT

BACKGROUND: The extent of gait abnormality is non-uniform across motor phenotypes of Parkinson's disease (PD). The biological basis of this heterogeneity remains intriguing. Moreover, the relationship of gait impairment with various neurodegenerative protein markers in PD is not well established. OBJECTIVES: Here, we aimed to explore the interplay between gait parameters and specific serum protein markers in PD. METHODS: A total of 62 PD patients were consecutively recruited. Blood samples and gait data were acquired from 37 and 34 patients respectively. Two-dimensional spatio-temporal gait parameters were estimated using an electronic walkway (GAITRite®, CIR Systems Inc., USA). Serum phosphorylated alpha synuclein (p-Ser129-a-syn) and total a-syn levels were measured using commercially available ELISA kit. Data was analyzed using SPSS Version 20 (IBM). RESULTS: We found that phosphorylated a-syn levels were significantly higher in PD patients with postural instability and gait difficulty compared to tremor dominant variant. Significant reduction in gait velocity was also observed with increasing levels of this pathological form of a-syn. Regression modelling showed that phosphorylated a-syn is an independent predictor of gait velocity. DISCUSSION: Our findings indicate that concentrations of peripheral p-Ser129-a-syn but not total a-syn could be a potential contributor of gait impairment in PD. Further investigation on the systemic role of phosphorylated a-syn on gait would bridge the gap between central and peripheral mechanisms underlying phenotypic variability in PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Biomarkers , Gait , Humans , Parkinson Disease/genetics , Tremor , alpha-Synuclein/metabolism
7.
Ann Indian Acad Neurol ; 25(6): 1029-1035, 2022.
Article in English | MEDLINE | ID: mdl-36911494

ABSTRACT

Parkinson's disease (PD) lacks a definitive diagnosis due to a lack of pathological validation of patients at antemortem. The risk of misdiagnosis is high in the early stages of PD, often eluded by atypical parkinsonian symptoms. Neuroimaging and laboratory biomarkers are being sought to aid in the clinical diagnosis of PD. Nigrosome imaging and neuromelanin (NM)-sensitive magnetic resonance imaging (MRI) are the new emerging tools, both technically simple plus cost-effective for studying nigral pathology, and have shown potential for authenticating the clinical diagnosis of PD. Visual assessment of the nigrosome-1 appearance, at 3 or 7 Tesla, yields excellent diagnostic accuracy for differentiating idiopathic PD from healthy controls. Moreover, midbrain atrophy and putaminal hypointensity in nigrosome-1 imaging are valid pointers in distinguishing PD from allied parkinsonian disorders. The majority of studies employed T2 and susceptibility-weighted imaging MRI sequences to visualize nigrosome abnormalities, whereas T1-weighted fast-spin echo sequences were used for NM imaging. The diagnostic performance of NM-sensitive MRI in discriminating PD from normal HC can be improved further. Longitudinal studies with adequate sampling of varied uncertain PD cases should be designed to accurately evaluate the sensitivity and diagnostic potential of nigrosome and NM imaging techniques. Equal weightage is to be given to uniformity and standardization of protocols, data analysis, and interpretation of results. There is tremendous scope for identifying disease-specific structural changes in varied forms of parkinsonism with these low-cost imaging tools. Nigrosome-1 and midbrain NM imaging may not only provide an accurate diagnosis of PD but could mature into tools for personally tailored treatment and prognosis.

8.
J Food Biochem ; : e13833, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34169530

ABSTRACT

Hericium erinaceus (Bull.) Persoon, a popular medicinal edible mushroom, owns a long history of usage in traditional Chinese medicine and also in other oriental countries. Along with this, its several bioactive compounds have been evolved into food supplements. Meanwhile, this present investigation aimed at extracting bioactive components from fruiting bodies of H. erinaceus using two different solvents and evaluating its in vitro antioxidant, antimicrobial, and antiproliferative efficacy. Chemical analysis showed extracts were rich in phenol, flavonoids, and ascorbic acids while lesser amount of carotenoids were also detected in these extracts. Both extracts were able to scavenge 1,1-diphenyl-2-picrylhydrazyl (~76%) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) radicals (~81%) and also showed chelating activity (~73.05%). The ethanolic extract exhibited the highest antioxidant activity (total antioxidant capacity 2.17 µg ascorbic acid equivalent/mg of extract) whereas methanolic extract showed moderate capacity (total antioxidant capacity 1.42 µg ascorbic acid equivalent/mg of extract). All extracts displayed antibacterial activity against both Gram-positive and Gram-negative bacteria as well (minimum inhibition concentration 1,575-2,750 µg/ml) although methanolic extract showed some selectivity towards bacterial strains. Apart from these, ethanolic fraction has found to exhibit potent cytotoxicity (IC50 403.12 µg/ml) towards lung adenocarcinoma cells. These studies thus provide the reference data that could support this mushroom as an easily accessible source of natural bioactive components. PRACTICAL APPLICATIONS: Mushroom extracts have long been traditionally used as miracle medicine to treat an extensive range of ailments. These findings indicate the potential benefits of the Hericium erinaceus (Bull.) Persoon extracts for the development of multi-target therapeutics as well as extraction with appropriate solvents also provide leads for the isolation of various principle compounds. The extracts thus could be used to treat oxidative stress-related disorders as they are found to contain antioxidant compounds like phenols and others and also they possessed good antimicrobial and anticancer activity.

9.
Front Hum Neurosci ; 14: 567177, 2020.
Article in English | MEDLINE | ID: mdl-33132880

ABSTRACT

Introduction: The ability to stop the execution of a movement in response to an external cue requires intact executive function. The effect of psychotropic drugs on movement inhibition is largely unknown. Movement stopping can be estimated by the Stop Signal Reaction Time (SSRT). In a recent publication, we validated an improved measure of SSRT (optimum combination SSRT, ocSSRT). Here we explored how diazepam, which enhances transmission at GABAA receptors, affects ocSSRT. Methods: Nine healthy individuals were randomized to receive placebo, 5 mg or 10 mg doses of diazepam. Each participant received both the dosage of drug and placebo orally on separate days with adequate washout. The ocSSRT and simple reaction time (RT) were estimated through a stop-signal task delivered via a battery-operated box incorporating green (Go) and red (Stop) light-emitting diodes. The task was performed just before and 1 h after dosing. Result: The mean change in ocSSRT after 10 mg diazepam was significantly higher (+27 ms) than for placebo (-1 ms; p = 0.012). By contrast, the mean change in simple response time remained comparable in all three dosing groups (p = 0.419). Conclusion: Our results confirm that a single therapeutic adult dose of diazepam can alter motor inhibition in drug naïve healthy individuals. The selective effect of diazepam on ocSSRT but not simple RT suggests that GABAergic neurons may play a critical role in movement-stopping.

SELECTION OF CITATIONS
SEARCH DETAIL
...