Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(18)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967211

ABSTRACT

A plastic filament of poly (methyl methacrylate) (PMMA) was fabricated by extrusion. The mode confinement was simulated using numerical software. The idea is to study how the light intensity changes inside the plastic optical fiber (POF) when a bending in multiple directions is applied. The results obtained from the simulation were compared to the experimental observations. The non-circular shape of the POF allows sensing a rotation applied as well. The angle of rotation was obtained processing two images of the end facet of the fiber (one with the fiber in a reference position and one with the rotated fiber), using an intensity-based automatic image registration. The accuracy in the rotation calculation was of 0.01°.

2.
Opt Express ; 27(26): 38661-38669, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878629

ABSTRACT

Quasi-distributed temperature sensing and single point vibration sensing were performed. Ultrashort pulses generated by a gain-switching laser were used to interrogate a fiber Bragg gratings (FBG) array sensor. Temperature changes were measured down to 1°C with sub-centimeter spatial resolution. The advantages of our fast interrogation setup were exploited, as the higher frequency limit of a dynamic measure that can be sensed is limited by the time needed to generate the optical pulse and to acquire the data from the sensor. The experimental approach described in this paper can sense mechanical vibrations up to a frequency of 245 kHz and a strain resolution as low as 1.2 µÉ›.

3.
Sensors (Basel) ; 17(12)2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29236082

ABSTRACT

The aim of this paper is to report the design of a low-cost plastic optical fiber (POF) pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm) and a silicon light sensor. The Super ESKA® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2-5 s (0.2-0.5 Hz). The sensor has a resolution of force applied on a single point of 2.2-4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.


Subject(s)
Optical Fibers , Beds , Equipment Design , Fiber Optic Technology , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL
...