Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38927635

ABSTRACT

The integration of target capture systems with next-generation sequencing has emerged as an efficient tool for exploring specific genetic regions with a high resolution and facilitating the rapid discovery of novel alleles. Despite these advancements, the application of targeted sequencing methodologies, such as the myBaits technology, in polyploid oat species remains relatively unexplored. In this study, we utilized the myBaits target capture method offered by Daicel Arbor Biosciences to detect variants and assess their reliability for variant detection in oat genomics and breeding. Ten oat genotypes were carefully chosen for targeted sequencing, focusing on specific regions on chromosome 2A to detect variants. The selected region harbors 98 genes. Precisely designed baits targeting the genes within these regions were employed for the target capture sequencing. We employed various mappers and variant callers to identify variants. After the identification of variants, we focused on the variants identified via all variants callers to assess the applicability of the myBaits sequencing methodology in oat breeding. In our efforts to validate the identified variants, we focused on two SNPs, one deletion and one insertion identified via all variant callers in the genotypes KF-318 and NOS 819111-70 but absent in the remaining eight genotypes. The Sanger sequencing of targeted SNPs failed to reproduce target capture data obtained through the myBaits technology. Similarly, the validation of deletion and insertion variants via high-resolution melting (HRM) curve analysis also failed to reproduce target capture data, again suggesting limitations in the reliability of the myBaits target capture sequencing using short-read sequencing for variant detection in the oat genome. This study shed light on the importance of exercising caution when employing the myBaits target capture strategy for variant detection in oats. This study provides valuable insights for breeders seeking to advance oat breeding efforts and marker development using myBaits target capture sequencing, emphasizing the significance of methodological sequencing considerations in oat genomics research.


Subject(s)
Avena , High-Throughput Nucleotide Sequencing , Plant Breeding , Polymorphism, Single Nucleotide , Avena/genetics , High-Throughput Nucleotide Sequencing/methods , Plant Breeding/methods , Polymorphism, Single Nucleotide/genetics , Genome, Plant/genetics , Genomics/methods , Genotype , Sequence Analysis, DNA/methods
2.
Front Plant Sci ; 15: 1306591, 2024.
Article in English | MEDLINE | ID: mdl-38304738

ABSTRACT

Rye (Secale cereale L.) is an important cereal crop used for food, beverages, and feed, especially in North-Eastern Europe. While rye is generally more tolerant to biotic and abiotic stresses than other cereals, it still can be infected by several diseases, including scald caused by Rhynchosporium secalis. The aims of this study were to investigate the genetic architecture of scald resistance, to identify genetic markers associated with scald resistance, which could be used in breeding of hybrid rye and to develop a model for genomic prediction for scald resistance. Four datasets with records of scald resistance on a population of 251 hybrid winter rye lines grown in 2 years and at 3 locations were used for this study. Four genomic models were used to obtain variance components and heritabilities of scald resistance. All genomic models included additive genetic effects of the parental components of the hybrids and three of the models included additive-by-additive epistasis and/or dominance effects. All models showed moderate to high broad sense heritabilities in the range of 0.31 (SE 0.05) to 0.76 (0.02). The model without non-additive genetic effects and the model with dominance effects had moderate narrow sense heritabilities ranging from 0.24 (0.06) to 0.55 (0.08). None of the models detected significant non-additive genomic variances, likely due to a limited data size. A genome wide association study was conducted to identify markers associated with scald resistance in hybrid winter rye. In three datasets, the study identified a total of twelve markers as being significantly associated with scald resistance. Only one marker was associated with a major quantitative trait locus (QTL) influencing scald resistance. This marker explained 11-12% of the phenotypic variance in two locations. Evidence of genotype-by-environment interactions was found for scald resistance between one location and the other two locations, which suggested that scald resistance was influenced by different QTLs in different environments. Based on the results of the genomic prediction models and GWAS, scald resistance seems to be a quantitative trait controlled by many minor QTL and one major QTL, and to be influenced by genotype-by-environment interactions.

3.
Genet Sel Evol ; 55(1): 61, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670243

ABSTRACT

BACKGROUND: Metabolomics measures an intermediate stage between genotype and phenotype, and may therefore be useful for breeding. Our objectives were to investigate genetic parameters and accuracies of predicted breeding values for malting quality (MQ) traits when integrating both genomic and metabolomic information. In total, 2430 plots of 562 malting spring barley lines from three years and two locations were included. Five MQ traits were measured in wort produced from each plot. Metabolomic features used were 24,018 nuclear magnetic resonance intensities measured on each wort sample. Methods for statistical analyses were genomic best linear unbiased prediction (GBLUP) and metabolomic-genomic best linear unbiased prediction (MGBLUP). Accuracies of predicted breeding values were compared using two cross-validation strategies: leave-one-year-out (LOYO) and leave-one-line-out (LOLO), and the increase in accuracy from the successive inclusion of first, metabolomic data on the lines in the validation population (VP), and second, both metabolomic data and phenotypes on the lines in the VP, was investigated using the linear regression (LR) method. RESULTS: For all traits, we saw that the metabolome-mediated heritability was substantial. Cross-validation results showed that, in general, prediction accuracies from MGBLUP and GBLUP were similar when phenotypes and metabolomic data were recorded on the same plots. Results from the LR method showed that for all traits, except one, accuracy of MGBLUP increased when including metabolomic data on the lines of the VP, and further increased when including also phenotypes. However, in general the increase in accuracy of MGBLUP when including both metabolomic data and phenotypes on lines of the VP was similar to the increase in accuracy of GBLUP when including phenotypes on the lines of the VP. Therefore, we found that, when metabolomic data were included on the lines of the VP, accuracies substantially increased for lines without phenotypic records, but they did not increase much when phenotypes were already known. CONCLUSIONS: MGBLUP is a useful approach to combine phenotypic, genomic and metabolomic data for predicting breeding values for MQ traits. We believe that our results have significant implications for practical breeding of barley and potentially many other species.


Subject(s)
Hordeum , Plant Breeding , Genomics , Phenotype , Metabolomics
4.
Front Plant Sci ; 14: 1193433, 2023.
Article in English | MEDLINE | ID: mdl-38162304

ABSTRACT

Genomic models for prediction of additive and non-additive effects within and across different heterotic groups are lacking for breeding of hybrid crops. In this study, genomic prediction models accounting for incomplete inbreeding in parental lines from two different heterotic groups were developed and evaluated. The models can be used for prediction of general combining ability (GCA) of parental lines from each heterotic group as well as specific combining ability (SCA) of all realized and potential crosses. Here, GCA was estimated as the sum of additive genetic effects and within-group epistasis due to high degree of inbreeding in parental lines. SCA was estimated as the sum of across-group epistasis and dominance effects. Three models were compared. In model 1, it was assumed that each hybrid was produced from two completely inbred parental lines. Model 1 was extended to include three-way hybrids from parental lines with arbitrary levels of inbreeding: In model 2, parents of the three-way hybrids could have any levels of inbreeding, while the grandparents of the maternal parent were assumed completely inbred. In model 3, all parental components could have any levels of inbreeding. Data from commercial breeding programs for hybrid rye and sugar beet was used to evaluate the models. The traits grain yield and root yield were analyzed for rye and sugar beet, respectively. Additive genetic variances were larger than epistatic and dominance variances. The models' predictive abilities for total genetic value, for GCA of each parental line and for SCA were evaluated based on different cross-validation strategies. Predictive abilities were highest for total genetic values and lowest for SCA. Predictive abilities for SCA and for GCA of maternal lines were higher for model 2 and model 3 than for model 1. The implementation of the genomic prediction models in hybrid breeding programs can potentially lead to increased genetic gain in two different ways: I) by facilitating the selection of crossing parents with high GCA within heterotic groups and II) by prediction of SCA of all realized and potential combinations of parental lines to produce hybrids with high total genetic values.

5.
Front Plant Sci ; 13: 939448, 2022.
Article in English | MEDLINE | ID: mdl-36119585

ABSTRACT

Multi-trait and multi-environment analyses can improve genomic prediction by exploiting between-trait correlations and genotype-by-environment interactions. In the context of reaction norm models, genotype-by-environment interactions can be described as functions of high-dimensional sets of markers and environmental covariates. However, comprehensive multi-trait reaction norm models accounting for marker × environmental covariates interactions are lacking. In this article, we propose to extend a reaction norm model incorporating genotype-by-environment interactions through (co)variance structures of markers and environmental covariates to a multi-trait reaction norm case. To do that, we propose a novel methodology for characterizing the environment at different growth stages based on growth degree-days (GDD). The proposed models were evaluated by variance components estimation and predictive performance for winter wheat grain yield and protein content in a set of 2,015 F6-lines. Cross-validation analyses were performed using leave-one-year-location-out (CV1) and leave-one-breeding-cycle-out (CV2) strategies. The modeling of genomic [SNPs] × environmental covariates interactions significantly improved predictive ability and reduced the variance inflation of predicted genetic values for grain yield and protein content in both cross-validation schemes. Trait-assisted genomic prediction was carried out for multi-trait models, and it significantly enhanced predictive ability and reduced variance inflation in all scenarios. The genotype by environment interaction modeling via genomic [SNPs] × environmental covariates interactions, combined with trait-assisted genomic prediction, boosted the benefits in predictive performance. The proposed multi-trait reaction norm methodology is a comprehensive approach that allows capitalizing on the benefits of multi-trait models accounting for between-trait correlations and reaction norm models exploiting high-dimensional genomic and environmental information.

6.
Sci Rep ; 12(1): 7881, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551263

ABSTRACT

We investigated prediction of malting quality (MQ) phenotypes in different locations using metabolomic spectra, and compared the prediction ability of different models, and training population (TP) sizes. Data of five MQ traits was measured on 2667 individual plots of 564 malting spring barley lines from three years and two locations. A total of 24,018 metabolomic features (MFs) were measured on each wort sample. Two statistical models were used, a metabolomic best linear unbiased prediction (MBLUP) and a partial least squares regression (PLSR). Predictive ability within location and across locations were compared using cross-validation methods. For all traits, more than 90% of the total variance in MQ traits could be explained by MFs. The prediction accuracy increased with increasing TP size and stabilized when the TP size reached 1000. The optimal number of components considered in the PLSR models was 20. The accuracy using leave-one-line-out cross-validation ranged from 0.722 to 0.865 and using leave-one-location-out cross-validation from 0.517 to 0.817. In conclusion, the prediction accuracy of metabolomic prediction of MQ traits using MFs was high and MBLUP is better than PLSR if the training population is larger than 100. The results have significant implications for practical barley breeding for malting quality.


Subject(s)
Hordeum , Chromosome Mapping , Genotype , Hordeum/genetics , Phenotype , Plant Breeding , Quantitative Trait Loci
7.
Cells ; 11(8)2022 04 09.
Article in English | MEDLINE | ID: mdl-35455953

ABSTRACT

The majority of released rye cultivars are susceptible to leaf rust because of a low level of resistance in the predominant hybrid rye-breeding gene pools Petkus and Carsten. To discover new sources of leaf rust resistance, we phenotyped a diverse panel of inbred lines from the less prevalent Gülzow germplasm using six distinct isolates of Puccinia recondita f. sp. secalis and found that 55 out of 92 lines were resistant to all isolates. By performing a genome-wide association study using 261,406 informative SNP markers, we identified five resistance-associated QTLs on chromosome arms 1RS, 1RL, 2RL, 5RL and 7RS. To identify candidate Puccinia recondita (Pr) resistance genes in these QTLs, we sequenced the rye nucleotide-binding leucine-rich repeat (NLR) intracellular immune receptor complement using a Triticeae NLR bait-library and PacBio® long-read single-molecule high-fidelity (HiFi) sequencing. Trait-genotype correlations across 10 resistant and 10 susceptible lines identified four candidate NLR-encoding Pr genes. One of these physically co-localized with molecular markers delimiting Pr3 on chromosome arm 1RS and the top-most resistance-associated QTL in the panel.


Subject(s)
Basidiomycota , Secale , Basidiomycota/genetics , Disease Resistance/genetics , Genes, Plant , Genome-Wide Association Study , Plant Diseases/genetics , Puccinia , Secale/genetics
8.
Theor Appl Genet ; 135(3): 965-978, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34973112

ABSTRACT

KEY MESSAGE: Including additive and additive-by-additive epistasis in a NOIA parametrization did not yield orthogonal partitioning of genetic variances, nevertheless, it improved predictive ability in a leave-one-out cross-validation for wheat grain yield. Additive-by-additive epistasis is the principal non-additive genetic effect in inbred wheat lines and is potentially useful for developing cultivars based on total genetic merit; nevertheless, its practical benefits have been highly debated. In this article, we aimed to (i) evaluate the performance of models including additive and additive-by-additive epistatic effects for variance components (VC) estimation of grain yield in a wheat-breeding population, and (ii) to investigate whether including additive-by-additive epistasis in genomic prediction enhance wheat grain yield predictive ability (PA). In total, 2060 sixth-generation (F6) lines from Nordic Seed A/S breeding company were phenotyped in 21 year-location combinations in Denmark, and genotyped using a 15 K-Illumina-BeadChip. Three models were used to estimate VC and heritability at plot level: (i) "I-model" (baseline), (ii) "I + GA-model", extending I-model with an additive genomic effect, and (iii) "I + GA + GAA-model", extending I + GA-model with an additive-by-additive genomic effects. The I + GA-model and I + GA + GAA-model were based on the Natural and Orthogonal Interactions Approach (NOIA) parametrization. The I + GA + GAA-model failed to achieve orthogonal partition of genetic variances, as revealed by a change in estimated additive variance of I + GA-model when epistasis was included in the I + GA + GAA-model. The PA was studied using leave-one-line-out and leave-one-breeding-cycle-out cross-validations. The I + GA + GAA-model increased PA significantly (16.5%) compared to the I + GA-model in leave-one-line-out cross-validation. However, the improvement due to including epistasis was not observed in leave-one-breeding-cycle-out cross-validation. We conclude that epistatic models can be useful to enhance predictions of total genetic merit. However, even though we used the NOIA parameterization, the variance partition into orthogonal genetic effects was not possible.


Subject(s)
Epistasis, Genetic , Triticum , Genome , Genomics , Models, Genetic , Plant Breeding , Triticum/genetics
9.
Front Plant Sci ; 13: 1075077, 2022.
Article in English | MEDLINE | ID: mdl-36816478

ABSTRACT

Individuals within a common environment experience variations due to unique and non-identifiable micro-environmental factors. Genetic sensitivity to micro-environmental variation (i.e. micro-environmental sensitivity) can be identified in residuals, and genotypes with lower micro-environmental sensitivity can show greater resilience towards environmental perturbations. Micro-environmental sensitivity has been studied in animals; however, research on this topic is limited in plants and lacking in wheat. In this article, we aimed to (i) quantify the influence of genetic variation on residual dispersion and the genetic correlation between genetic effects on (expressed) phenotypes and residual dispersion for wheat grain yield using a double hierarchical generalized linear model (DHGLM); and (ii) evaluate the predictive performance of the proposed DHGLM for prediction of additive genetic effects on (expressed) phenotypes and its residual dispersion. Analyses were based on 2,456 advanced breeding lines tested in replicated trials within and across different environments in Denmark and genotyped with a 15K SNP-Illumina-BeadChip. We found that micro-environmental sensitivity for grain yield is heritable, and there is potential for its reduction. The genetic correlation between additive effects on (expressed) phenotypes and dispersion was investigated, and we observed an intermediate correlation. From these results, we concluded that breeding for reduced micro-environmental sensitivity is possible and can be included within breeding objectives without compromising selection for increased yield. The predictive ability and variance inflation for predictions of the DHGLM and a linear mixed model allowing heteroscedasticity of residual variance in different environments (LMM-HET) were evaluated using leave-one-line-out cross-validation. The LMM-HET and DHGLM showed good and similar performance for predicting additive effects on (expressed) phenotypes. In addition, the accuracy of predicting genetic effects on residual dispersion was sufficient to allow genetic selection for resilience. Such findings suggests that DHGLM may be a good choice to increase grain yield and reduce its micro-environmental sensitivity.

10.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502186

ABSTRACT

Efficient and stable restoration of male fertility (Rf) is a prerequisite for large-scale hybrid seed production but remains an inherent issue in the predominant fertility control system of rye (Secale cereale L.). The 'Gülzow' (G)-type cytoplasmic male sterility (CMS) system in hybrid rye breeding exhibits a superior Rf. While having received little scientific attention, one major G-type Rf gene has been identified on 4RL (Rfg1) and two minor genes on 3R (Rfg2) and 6R (Rfg3) chromosomes. Here, we report a comprehensive investigation of the genetics underlying restoration of male fertility in a large G-type CMS breeding system using recent advents in rye genomic resources. This includes: (I) genome-wide association studies (GWAS) on G-type germplasm; (II) GWAS on a biparental mapping population; and (III) an RNA sequence study to investigate the expression of genes residing in Rf-associated regions in G-type rye hybrids. Our findings provide compelling evidence of a novel major G-type non-PPR Rf gene on the 3RL chromosome belonging to the mitochondrial transcription termination factor gene family. We provisionally denote the identified novel Rf gene on 3RL RfNOS1. The discovery made in this study is distinct from known P- and C-type systems in rye as well as recognized CMS systems in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). We believe this study constitutes a stepping stone towards understanding the restoration of male fertility in the G-type CMS system and potential resources for addressing the inherent issues of the P-type system.


Subject(s)
Nitric Oxide Synthase Type I/physiology , Polymorphism, Single Nucleotide , Secale/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study , Linkage Disequilibrium , Plant Infertility/genetics , Secale/enzymology , Sequence Analysis, RNA
11.
Heredity (Edinb) ; 126(5): 717-732, 2021 05.
Article in English | MEDLINE | ID: mdl-33510469

ABSTRACT

Understanding the genotype-phenotype map and how variation at different levels of biological organization is associated are central topics in modern biology. Fast developments in sequencing technologies and other molecular omic tools enable researchers to obtain detailed information on variation at DNA level and on intermediate endophenotypes, such as RNA, proteins and metabolites. This can facilitate our understanding of the link between genotypes and molecular and functional organismal phenotypes. Here, we use the Drosophila melanogaster Genetic Reference Panel and nuclear magnetic resonance (NMR) metabolomics to investigate the ability of the metabolome to predict organismal phenotypes. We performed NMR metabolomics on four replicate pools of male flies from each of 170 different isogenic lines. Our results show that metabolite profiles are variable among the investigated lines and that this variation is highly heritable. Second, we identify genes associated with metabolome variation. Third, using the metabolome gave better prediction accuracies than genomic information for four of five quantitative traits analyzed. Our comprehensive characterization of population-scale diversity of metabolomes and its genetic basis illustrates that metabolites have large potential as predictors of organismal phenotypes. This finding is of great importance, e.g., in human medicine, evolutionary biology and animal and plant breeding.


Subject(s)
Drosophila melanogaster , Metabolome , Animals , Drosophila melanogaster/genetics , Metabolomics , Phenotype , Plant Breeding
12.
Cells ; 11(1)2021 12 27.
Article in English | MEDLINE | ID: mdl-35011626

ABSTRACT

Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and 2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1 gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye. Due to the close proximity to the most resistance-associated marker, our findings suggest that the considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.


Subject(s)
Genome-Wide Association Study , Genomics , Plant Diseases/microbiology , Plant Leaves/microbiology , Puccinia/physiology , Secale/microbiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Genes, Plant , Phenotype , Phylogeny , Plant Diseases/genetics , Plant Diseases/immunology , Plant Leaves/genetics , Polymorphism, Single Nucleotide/genetics , Secale/genetics , Secale/immunology
13.
Front Plant Sci ; 11: 575467, 2020.
Article in English | MEDLINE | ID: mdl-33193515

ABSTRACT

Barley is the most common source for malt to be used in brewing beer and other alcoholic beverages. This involves converting the starch of barley into fermentable sugars a process that involves malting, that is germinating of the grains, and mashing, which is an enzymatic process. Numerous metabolic processes are involved in germination, where distinct and time-dependent alterations at the metabolite levels happen. In this study, 2,628 plots of 565 spring malting barley lines from Nordic Seed A/S were investigated. Phenotypic records were available for six malting quality (MQ) traits: filtering speed (FS), wort clearness (WCL), extract yield (EY), wort color (WCO), beta glucan (BG), and wort viscosity (WV). Each line had a set of dense genomic markers. In addition, 24,018 metabolomic features (MFs) were obtained for each sample from nuclear magnetic resonance (NMR) spectra for wort samples produced from each experimental plot. The genetic variation in the MFs was investigated using a univariate model, and the relationship between MFs and the MQ traits was studied using a bivariate model. Results showed that a total of 8,604 MFs had heritability estimates significantly larger than 0 and for all MQ traits, there were genetic correlations with up to 86.77% and phenotypic correlations with up to 90.07% of the significant heritable MFs. In conclusion, around one third of all MFs were significantly heritable, among which a considerable proportion had significant additive genetic and/or phenotypic correlations with the MQ traits (WCO, WV, and BG) in spring barley. The results from this study indicate that many of the MFs are heritable and MFs have great potential to be used in breeding barley for high MQ.

14.
PLoS One ; 15(10): e0239541, 2020.
Article in English | MEDLINE | ID: mdl-33035208

ABSTRACT

Rye (Secale cereale L.) responds strongly to changes in heterozygosity with hybrids portraying strong heterosis effect on all developmental and yielding characteristics. In order to achieve the highest potential heterosis effect parental lines must originate from genetically distinct gene pools. Here we report the first comprehensive SNP-based population study of an elite germplasm using fertilization control system for hybrid breeding in rye that is genetically different to the predominating P-type. In total 376 inbred lines from Nordic Seed Germany GmbH were genotyped for 4419 polymorphic SNPs. The aim of this study was to confirm and quantify the genetic separation of parental populations, unveil their genetic characteristics and investigate underlying population structures. Through a palette of complimenting analysis, we confirmed a strong genetic differentiation (FST = 0.332) of parental populations validating the germplasms suitability for hybrid breeding. These were, furthermore, found to diverge considerably in several features with the maternal population portraying a strong population structure characterized by a narrow genetic profile, small effective population size and high genome-wise linkage disequilibrium. We propose that the employed male-sterility system putatively constitutes a population determining parameter by influencing the rate of introducing novel genetic variation to the parental populations. Functional analysis of linkage blocks led to identification of a conserved segment on the distal 4RL chromosomal region annotated to the Rfp3 male-fertility restoration 'Pampa' type gene. Findings of our study emphasized the immediate value of comprehensive population studies on elite breeding germplasms as a pre-requisite for application of genomic-based breeding techniques, introgression of novel material and to support breeder decision-making.


Subject(s)
Hybridization, Genetic , Secale/genetics , Genetic Markers/genetics , Genotyping Techniques , Linkage Disequilibrium , Phylogeny , Polymorphism, Single Nucleotide
15.
Int J Mol Sci ; 21(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049995

ABSTRACT

Detoxification of fusariotoxin is a type V Fusarium head blight (FHB) resistance and is considered a component of type II resistance, which is related to the spread of infection within spikes. Understanding this type of resistance is vital for FHB resistance, but to date, nothing is known about candidate genes that confer this resistance in rye due to scarce genomic resources. In this study, we generated a transcriptomic resource. The molecular response was mined through a comprehensive transcriptomic analysis of two rye hybrids differing in the build-up of fusariotoxin contents in grain upon pathogen infection. Gene mining identified candidate genes and pathways contributing to the detoxification of fusariotoxins in rye. Moreover, we found cis regulatory elements in the promoters of identified genes and linked them to transcription factors. In the fusariotoxin analysis, we found that grain from the Nordic seed rye hybrid "Helltop" accumulated 4 times higher concentrations of deoxynivalenol (DON), 9 times higher nivalenol (NIV), and 28 times higher of zearalenone (ZEN) than that of the hybrid "DH372" after artificial inoculation under field conditions. In the transcriptome analysis, we identified 6675 and 5151 differentially expressed genes (DEGs) in DH372 and Helltop, respectively, compared to non-inoculated control plants. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs were associated with glycolysis and the mechanistic target of rapamycin (mTOR) signaling pathway in Helltop, whereas carbon fixation in photosynthesis organisms were represented in DH372. The gene ontology (GO) enrichment and gene set enrichment analysis (GSEA) of DEGs lead to identification of the metabolic and biosynthetic processes of peptides and amides in DH372, whereas photosynthesis, negative regulation of catalytic activity, and protein-chromophore linkage were the significant pathways in Helltop. In the process of gene mining, we found four genes that were known to be involved in FHB resistance in wheat and that were differentially expressed after infection only in DH372 but not in Helltop. Based on our results, we assume that DH372 employed a specific response to pathogen infection that led to detoxification of fusariotoxin and prevented their accumulation in grain. Our results indicate that DH372 might resist the accumulation of fusariotoxin through activation of the glycolysis and drug metabolism via cytochrome P450. The identified genes in DH372 might be regulated by the WRKY family transcription factors as associated cis regulatory elements found in the in silico analysis. The results of this study will help rye breeders to develop strategies against type V FHB.


Subject(s)
Edible Grain/genetics , Fusariosis/metabolism , Fusarium/metabolism , Plant Diseases/genetics , Plant Proteins/genetics , Secale/genetics , T-2 Toxin/metabolism , Transcription Factors/genetics , Transcriptome , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Disease Resistance/genetics , Edible Grain/metabolism , Edible Grain/microbiology , Fusariosis/microbiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Glycolysis/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Secale/metabolism , Secale/microbiology
16.
Sci Rep ; 10(1): 13475, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32778722

ABSTRACT

Rye is used as food, feed, and for bioenergy production and remain an essential grain crop for cool temperate zones in marginal soils. Ergot is known to cause severe problems in cross-pollinated rye by contamination of harvested grains. The molecular response of the underlying mechanisms of this disease is still poorly understood due to the complex infection pattern. RNA sequencing can provide astonishing details about the transcriptional landscape, hence we employed a transcriptomic approach to identify genes in the underlying mechanism of ergot infection in rye. In this study, we generated de novo assemblies from twelve biological samples of two rye hybrids with identified contrasting phenotypic responses to ergot infection. The final transcriptome of ergot susceptible (DH372) and moderately ergot resistant (Helltop) hybrids contain 208,690 and 192,116 contigs, respectively. By applying the BUSCO pipeline, we confirmed that these transcriptome assemblies contain more than 90% of gene representation of the available orthologue groups at Virdiplantae odb10. We employed a de novo assembled and the draft reference genome of rye to count the differentially expressed genes (DEGs) between the two hybrids with and without inoculation. The gene expression comparisons revealed that 228 genes were linked to ergot infection in both hybrids. The genome ontology enrichment analysis of DEGs associated them with metabolic processes, hydrolase activity, pectinesterase activity, cell wall modification, pollen development and pollen wall assembly. In addition, gene set enrichment analysis of DEGs linked them to cell wall modification and pectinesterase activity. These results suggest that a combination of different pathways, particularly cell wall modification and pectinesterase activity contribute to the underlying mechanism that might lead to resistance against ergot in rye. Our results may pave the way to select genetic material to improve resistance against ergot through better understanding of the mechanism of ergot infection at molecular level. Furthermore, the sequence data and de novo assemblies are valuable as scientific resources for future studies in rye.


Subject(s)
Secale/genetics , Secale/metabolism , Claviceps/genetics , Claviceps/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Molecular Sequence Annotation , Plant Diseases/genetics , Transcriptome
17.
J Anim Sci ; 98(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32687196

ABSTRACT

Whole-genome sequencing of 217 animals from three Danish commercial pig breeds (Duroc, Landrace [LL], and Yorkshire [YY]) was performed. Twenty-six million single-nucleotide polymorphisms (SNPs) and 8 million insertions or deletions (indels) were uncovered. Among the SNPs, 493,099 variants were located in coding sequences, and 29,430 were predicted to have a high functional impact such as gain or loss of stop codon. Using the whole-genome sequence dataset as the reference, the imputation accuracy for pigs genotyped with high-density SNP chips was examined. The overall average imputation accuracy for all biallelic variants (SNP and indel) was 0.69, while it was 0.83 for variants with minor allele frequency > 0.1. This study provides whole-genome reference data to impute SNP chip-genotyped animals for further studies to fine map quantitative trait loci as well as improving the prediction accuracy in genomic selection. Signatures of selection were identified both through analyses of fixation and differentiation to reveal selective sweeps that may have had prominent roles during breed development or subsequent divergent selection. However, the fixation indices did not indicate a strong divergence among these three breeds. In LL and YY, the integrated haplotype score identified genomic regions under recent selection. These regions contained genes for olfactory receptors and oxidoreductases. Olfactory receptor genes that might have played a major role in the domestication were previously reported to have been under selection in several species including cattle and swine.


Subject(s)
Genetic Variation , Genomics , Swine/genetics , Animals , Breeding , Denmark , Gene Frequency , Genome-Wide Association Study/veterinary , Genotype , Quantitative Trait Loci
18.
Front Plant Sci ; 11: 570863, 2020.
Article in English | MEDLINE | ID: mdl-33552092

ABSTRACT

Wheat (Triticum aestivum L.) is one of the world's staple food crops and one of the most devastating foliar diseases attacking wheat is powdery mildew (PM). In Denmark only a few specific fungicides are available for controlling PM and the use of resistant cultivars is often recommended. In this study, two Chinese wheat landraces and two synthetic hexaploid wheat lines were used as donors for creating four multi-parental populations with a total of 717 individual lines to identify new PM resistance genetic variants. These lines and the nine parental lines (including the elite cultivars used to create the populations) were genotyped using a 20 K Illumina SNP chip, which resulted in 8,902 segregating single nucleotide polymorphisms for assessment of the population structure and whole genome association study. The largest genetic difference among the lines was between the donors and the elite cultivars, the second largest genetic difference was between the different donors; a difference that was also reflected in differences between the four multi-parental populations. The 726 lines were phenotyped for PM resistance in 2017 and 2018. A high PM disease pressure was observed in both seasons, with severities ranging from 0 to >50%. Whole genome association studies for genetic variation in PM resistance in the populations revealed significant markers mapped to either chromosome 2A, B, or D in each of the four populations. However, linkage disequilibrium between these putative quantitative trait loci (QTL) were all above 0.80, probably representing a single QTL. A combined analysis of all the populations confirmed this result and the most associated marker explained 42% of the variation in PM resistance. This study gives both knowledge about the resistance as well as molecular tools and plant material that can be utilised in marker-assisted selection. Additionally, the four populations produced in this study are highly suitable for association studies of other traits than PM resistance.

19.
Genetics ; 213(2): 633-650, 2019 10.
Article in English | MEDLINE | ID: mdl-31455722

ABSTRACT

Knowledge of the genetic basis underlying variation in response to environmental exposures or treatments is important in many research areas. For example, knowing the set of causal genetic variants for drug responses could revolutionize personalized medicine. We used Drosophila melanogaster to investigate the genetic signature underlying behavioral variability in response to methylphenidate (MPH), a drug used in the treatment of attention-deficit/hyperactivity disorder. We exposed a wild-type D. melanogaster population to MPH and a control treatment, and observed an increase in locomotor activity in MPH-exposed individuals. Whole-genome transcriptomic analyses revealed that the behavioral response to MPH was associated with abundant gene expression alterations. To confirm these patterns in a different genetic background and to further advance knowledge on the genetic signature of drug response variability, we used a system of inbred lines, the Drosophila Genetic Reference Panel (DGRP). Based on the DGRP, we showed that the behavioral response to MPH was strongly genotype-dependent. Using an integrative genomic approach, we incorporated known gene interactions into the genomic analyses of the DGRP, and identified putative candidate genes for variability in drug response. We successfully validated 71% of the investigated candidate genes by gene expression knockdown. Furthermore, we showed that MPH has cross-generational behavioral and transcriptomic effects. Our findings establish a foundation for understanding the genetic mechanisms driving genotype-specific responses to medical treatment, and highlight the opportunities that integrative genomic approaches have in optimizing medical treatment of complex diseases.


Subject(s)
Drosophila melanogaster/genetics , Genomics , Locomotion/genetics , Transcriptome/genetics , Animals , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/genetics , Drosophila melanogaster/drug effects , Epistasis, Genetic/genetics , Female , Gene Expression Regulation/drug effects , Genetic Association Studies , Genetic Variation/genetics , Genome, Insect/drug effects , Humans , Locomotion/drug effects , Male , Methylphenidate/pharmacology , Transcriptome/drug effects
20.
J Anim Sci ; 97(9): 3832-3844, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31278866

ABSTRACT

In recent years, metabolomics has been used to clarify the biology underlying biological samples. In the field of animal breeding, investigating the magnitude of genetic control on the metabolomic profiles of animals and their relationships with quantitative traits adds valuable information to animal improvement schemes. In this study, we analyzed metabolomic features (MFs) extracted from the metabolomic profiles of 843 male Holstein calves. The metabolomic profiles were obtained using nuclear magnetic resonance (NMR) spectroscopy. We investigated 2 alternative methods to control for peak shifts in the NMR spectra, binning and aligning, to determine which approach was the most efficient for assessing genetic variance. Series of univariate analyses were implemented to elucidate the heritability of each MF. Furthermore, records on BW and ADG from 154 to 294 d of age (ADG154-294), 294 to 336 d of age (ADG294-336), and 154 to 336 d of age (ADG154-336) were used in a series of bivariate analyses to establish the genetic and phenotypic correlations with MFs. Bivariate analyses were only performed for MFs that had a heritability significantly different from zero. The heritabilities obtained in the univariate analyses for the MFs in the binned data set were low (<0.2). In contrast, in the aligned data set, we obtained moderate heritability (0.2 to 0.5) for 3.5% of MFs and high heritability (more than 0.5) for 1% of MFs. The bivariate analyses showed that ~12%, ~3%, ~9%, and ~9% of MFs had significant additive genetic correlations with BW, ADG154-294, ADG294-336, and ADG154-336, respectively. In all of the bivariate analyses, the percentage of significant additive genetic correlations was higher than the percentage of significant phenotypic correlations of the corresponding trait. Our results provided insights into the influence of the underlying genetic mechanisms on MFs. Further investigations in this field are needed for better understanding of the genetic relationship among the MFs and quantitative traits.


Subject(s)
Cattle/genetics , Genetic Variation , Metabolomics , Animals , Body Weight/genetics , Cattle/metabolism , Female , Male , Phenotype , Weight Gain/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...