Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Microvasc Res ; 152: 104646, 2024 03.
Article En | MEDLINE | ID: mdl-38092222

Blood flow in the gingiva, comprising the interdental papilla as well as attached and marginal gingiva, is important for maintaining of gingival function and is modulated by risk factors such as stress that may lead to periodontal disease. Marked blood flow changes mediated by the autonomic (parasympathetic and sympathetic) nervous system may be essential for gingival hemodynamics. However, differences in autonomic vasomotor responses and their functional significance in different parts of the gingiva are unclear. We examined the differences in autonomic vasomotor responses and their interactions in the gingiva of anesthetized rats. Parasympathetic vasodilation evoked by the trigeminal (lingual nerve)-mediated reflex elicited frequency-dependent blood flow increases in gingivae, with the increases being greatest in the interdental papilla. Parasympathetic blood flow increases were significantly reduced by intravenous administration of the atropine and VIP antagonist. The blood flow increase evoked by acetylcholine administration was higher in the interdental papilla than in the attached gingiva, whereas that evoked by VIP agonist administration was greater in the attached gingiva than in the interdental papilla. Activation of the cervical sympathetic nerves decreased gingival blood flow and inhibited parasympathetically induced blood flow increases. Our results suggest that trigeminal-parasympathetic reflex vasodilation 1) is more involved in the regulation of blood flow in the interdental papilla than in the other parts of the gingiva, 2) is mediated by cholinergic (interdental papilla) and VIPergic systems (attached gingiva), and 3) is inhibited by excess sympathetic activity. These results suggest a role in the etiology of periodontal diseases during mental stress.


Gingiva , Sympathetic Nervous System , Rats , Animals , Gingiva/blood supply , Vasodilation , Atropine/pharmacology
2.
BMC Geriatr ; 23(1): 97, 2023 02 15.
Article En | MEDLINE | ID: mdl-36792992

BACKGROUND: Age-related hearing loss (ARHL) is a common phenomenon observed during aging. On the other hand, the decrease in Nicotinamide adenine dinucleotide (NAD +) levels is reported to be closely related to the age-related declines in physiological functions such as ARHL in animal studies. Moreover, preclinical studies confirmed NAD + replenishment effectively prevents the onset of age-related diseases. However, there is a paucity of studies on the relationship between NAD+ metabolism and ARHL in humans. METHODS: This study was analyzed the baseline results of our previous clinical trial, in which nicotinamide mononucleotide or placebo was administered to 42 older men (Igarashi et al., NPJ Aging 8:5, 2022). The correlations between blood levels of NAD+-related metabolites at baseline and pure-tone hearing thresholds at different frequencies (125, 250, 500, 1000, 2000, 4000, and 8000 Hz) in 42 healthy Japanese men aged > 65 years were analyzed using Spearman's rank correlation. Multiple linear regression analysis was performed with hearing thresholds as the dependent variable and age and NAD+-related metabolite levels as independent variables. RESULTS: Positive associations were observed between levels of nicotinic acid (NA, a NAD+ precursor in the Preiss-Handler pathway) and right- or left-ear hearing thresholds at frequencies of 1000 Hz (right: r = 0.480, p = 0.001; left: r = 0.422, p = 0.003), 2000 Hz (right: r = 0.507, p < 0.001, left: r = 0.629, p < 0.001), and 4000 Hz (left: r = 0.366, p = 0.029). Age-adjusted multiple linear regression analysis revealed that NA was an independent predictor of elevated hearing thresholds (1000 Hz (right): p = 0.050, regression coefficient (ß) = 1610; 1000 Hz (left): p = 0.026, ß = 2179; 2000 Hz (right): p = 0.022, ß = 2317; 2000 Hz (left): p = 0.002, ß = 3257). Weak associations of nicotinic acid riboside (NAR) and nicotinamide (NAM) with hearing ability were observed. CONCLUSIONS: We identified negative correlations between blood concentrations of NA and hearing ability at 1000 and 2000 Hz. NAD+ metabolic pathway might be associated with ARHL onset or progression. Further studies are warranted. TRIAL REGISTRATION: The study was registered at UMIN-CTR (UMIN000036321) on 1st June 2019.


Niacin , Aged , Animals , Humans , Male , Aging/metabolism , Hearing , NAD/metabolism , Niacin/metabolism , Regression Analysis
3.
Am J Infect Control ; 51(2): 163-171, 2023 Feb.
Article En | MEDLINE | ID: mdl-35671846

BACKGROUND: The Japan Surveillance for Infection Prevention and Healthcare Epidemiology (J-SIPHE) system aggregates information related to antimicrobial resistance (AMR) measures in participating medical institutions nationwide and is intended to be used for promotion of AMR measures in participating facilities and their communities. This multicenter study aimed to determine the usefulness of the J-SIPHE system for evaluating the correlation between antibiotic use and antibiotic resistance in Hokkaido, Japan. METHODS: Data on antibiotic use and detection rate of major resistant Gram-negative bacteria at 19 hospitals in 2020 were collected from the J-SIPHE system, and data correlations were analyzed using JMP Pro. RESULTS: The detection rate of carbapenem-resistant Pseudomonas aeruginosa was significantly positively correlated with carbapenem use (Spearman's ρ = 0.551; P = .015). There were significant positive correlations between the detection rate of fluoroquinolone-resistant Escherichia coli and the use of piperacillin/tazobactam, carbapenems, and quinolones [ρ = 0.518 (P = .023), ρ = 0.76 (P < .001), and ρ = 0.502 (P = .029), respectively]. CONCLUSIONS: This is the first multicenter study to investigate the correlation between antibiotic use and antibiotic resistance using the J-SIPHE system. The results suggest that using this system may be beneficial for promoting AMR measures.


Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Japan/epidemiology , Carbapenems/pharmacology , Carbapenems/therapeutic use , Escherichia coli , Delivery of Health Care , Microbial Sensitivity Tests
4.
J Comp Physiol B ; 193(1): 109-124, 2023 01.
Article En | MEDLINE | ID: mdl-36436073

Marked blood flow (BF) changes mediated by the autonomic neural and humoral systems may be important for orofacial hemodynamics and functions. However, it remains questionable whether differences in the autonomic vasomotor responses mediated by neural and humoral systems exist in the orofacial area. This study examined whether there are differences in changes in the BF and vascular conductance (VC) between the masseter muscle and lower lip mediated by autonomic neural and humoral systems in urethane-anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve elicited BF increases in the masseter (mainly cholinergic) and lower lip (mainly non-cholinergic), accompanied by an increase in arterial blood pressure (ABP), while cervical sympathetic trunk stimulation consistently decreased BF at both sites. The lingual nerve stimulation induced a biphasic change in the VC in the masseter, consisting of an initial decrease and a successive increase. This decrease in VC was positively correlated with changes in ABP and diminished by guanethidine. Cervical vagus nerve stimulation also induced BF increases at both sites; the increases were greater in the masseter than in the lower lip. Adrenal nerve stimulation and isoproterenol administration induced BF increases in the masseter but not in the lower lip. These results indicate that cholinergic parasympathetic-mediated hemodynamics evoked by trigeminal somatosensory inputs are closely related to ABP changes. The sympathetic nervous system, including the sympathoadrenal system and visceral inputs, may be more involved in hemodynamics in the muscles than in epithelial tissues in the orofacial area.


Hemodynamics , Vasodilation , Rats , Animals , Vasodilation/physiology , Rats, Wistar , Guanethidine , Electric Stimulation
5.
Sci Rep ; 12(1): 14923, 2022 Sep 02.
Article En | MEDLINE | ID: mdl-36056157

TAR DNA-binding protein 43 kDa (TDP-43), a nuclear protein, plays an important role in the molecular pathogenesis of amyotrophic lateral sclerosis (ALS). The long-disordered C-terminal region (CTR) of TDP-43 is known to be aggregation-prone and a hotspot for ALS mutations, so elucidation of the physiological function of CTR will provide insights into the pathogenesis of ALS. The CTR has two Gly, aromatic, and Ser-rich (GaroS) segments and an amyloidogenic core divided into a hydrophobic patch (HP) and a Gln/Asn (Q/N)-rich segment. Although TDP-43 lacking the CTR is known to be unstable, as observed in knock-in mice, it is unclear which of these segments contributes to the stability of TDP-43. Here, we generated 12 mouse lines lacking the various sub-regions of CTR by genome editing and compared the embryonic lethality of homozygotes, and protein and mRNA expression levels of TDP-43. We demonstrated the functional diversity of the four segments of CTR, finding that the presence of the Q/N-rich segment greatly restored the protein stability of TDP-43. In addition, we found that the second GaroS deletion did not affect protein stability and mouse development.


DNA-Binding Proteins/chemistry , Protein Stability , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA-Binding Proteins/metabolism , Mice , Mutation
6.
NPJ Aging ; 8(1): 5, 2022 May 01.
Article En | MEDLINE | ID: mdl-35927255

Preclinical studies have revealed that the elevation of nicotinamide adenine dinucleotide (NAD + ) upon the administration of nicotinamide mononucleotide (NMN), an NAD + precursor, can mitigate aging-related disorders; however, human data on this are limited. We investigated whether the chronic oral supplementation of NMN can elevate blood NAD + levels and alter physiological dysfunctions in healthy older participants. We administered 250 mg NMN per day to aged men for 6 or 12 weeks in a placebo-controlled, randomized, double-blind, parallel-group trial. Chronic NMN supplementation was well tolerated and caused no significant deleterious effect. Metabolomic analysis of whole blood samples demonstrated that oral NMN supplementation significantly increased the NAD + and NAD + metabolite concentrations. There were nominally significant improvements in gait speed and performance in the left grip test, which should be validated in larger studies; however, NMN exerted no significant effect on body composition. Therefore, chronic oral NMN supplementation can be an efficient NAD + booster for preventing aging-related muscle dysfunctions in humans.

7.
Sci Rep ; 12(1): 14442, 2022 08 24.
Article En | MEDLINE | ID: mdl-36002548

A decrease in the intracellular level of nicotinamide adenine dinucleotide (NAD+), an essential coenzyme for metabolic activity, causes various age-related diseases and metabolic abnormalities. Both in-vivo and in-vitro studies have shown that increasing certain NAD+ levels in cell or tissue by supplementing nicotinamide mononucleotide (NMN), a precursor of NAD+, alleviates age-related diseases and metabolic disorders. In recent years, several clinical trials have been performed to elucidate NMN efficacy in humans. However, previous clinical studies with NMN have not reported on the safety of repeated daily oral administration of ≥ 1000 mg/shot in healthy adult men and women, and human clinical trials on NMN safety are limited. Therefore, we conducted a randomized, double-blind, placebo-controlled, parallel-group study to evaluate the safety of 1250 mg of ß-NMN administered orally once daily for up to 4 weeks in 31 healthy adult men and women aged 20-65 years. Oral administration of ß-NMN did not result in changes exceeding physiological variations in multiple clinical trials, including anthropometry, hematological, biochemical, urine, and body composition analyses. Moreover, no severe adverse events were observed during the study period. Our results indicate that ß-NMN is safe and well-tolerated in healthy adult men and women an oral dose of 1250 mg once daily for up to 4 weeks.Trial registration Clinicaltrials.gov Identifier: UMIN000043084. Registered 21/01/2021. https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000049188 .


NAD , Nicotinamide Mononucleotide , Administration, Oral , Adult , Aged , Female , Humans , Male , Middle Aged , NAD/metabolism , Young Adult
8.
Front Nutr ; 9: 868640, 2022.
Article En | MEDLINE | ID: mdl-35479740

Nicotinamide mononucleotide (NNM) is an orally bioavailable NAD+ precursor that has demonstrated beneficial effects against aging and aging-associated diseases in animal models. NMN is ultimately converted to NAD+, a redox cofactor that mediates many metabolic enzymes. NAD+ also serves as the substrate for poly(ADP-ribose) polymerase (PARP) and sirtuins, and regulates various biological processes, such as metabolism, DNA repair, gene expression, and stress responses. Previous mouse models showed that NMN administration can increase NAD+ in various organs and ameliorate aging-related diseases, such as obesity, diabetes, heart failure, stroke, kidney failure, and Alzheimer's disease through NAD+-mediated pathways. However, evidence of its effect on humans is still scarce. In this study, we conducted a placebo-controlled, randomized, double blind, parallel-group trial to investigate the safety of orally administered NMN and its efficacy to increase NAD+ levels in thirty healthy subjects. Healthy volunteers received 250 mg/day of NMN (n = 15) or placebo (n = 15) for 12 weeks, and physiological and laboratory tests were performed during this period. In addition, NAD+ and its related metabolites in whole blood were examined. Oral supplementation of NMN for 12 weeks caused no abnormalities in physiological and laboratory tests, and no obvious adverse effects were observed. NAD+ levels in whole blood were significantly increased after NMN administration. We also observed the significant rise in nicotinic acid mononucleotide (NAMN) levels, but not in NMN. We also found that the increased amount of NAD+ was strongly correlated with pulse rate before the administration of NMN. These results suggest that oral administration of NMN is a safe and practical strategy to boost NAD+ levels in humans. Clinical Trial Registration: JRCT [https://jrct.niph.go.jp/], identifier: [jRCTs041200034].

9.
Nutrients ; 14(4)2022 Feb 11.
Article En | MEDLINE | ID: mdl-35215405

Deteriorating sleep quality and physical or mental fatigue in older adults leads to decreased quality of life and increased mortality rates. This study investigated the effects of the time-dependent intake of nicotinamide mononucleotide (NMN) on sleep quality, fatigue, and physical performance in older adults. This randomized, double-blind placebo-controlled study evaluated 108 participants divided into four groups (NMN_AM; antemeridian, NMN_PM; post meridian, Placebo_AM, Placebo_PM). NMN (250 mg) or placebo was administered once a day for 12 weeks. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index. Fatigue was evaluated using the "Jikaku-sho shirabe" questionnaire. Grip strength, 5-times sit-to-stand (5-STS), timed up and go, and 5-m habitual walk were evaluated to assess the physical performance. Significant interactions were observed between 5-STS and drowsiness. 5-STS of all groups on post-intervention and drowsiness of the NMN_PM and Placebo_PM groups on mid- and post-intervention showed significant improvement compared with those in pre-intervention. The NMN_PM group demonstrated the largest effect size for 5-STS (d = 0.72) and drowsiness (d = 0.64). Overall, NMN intake in the afternoon effectively improved lower limb function and reduced drowsiness in older adults. These findings suggest the potential of NMN in preventing loss of physical performance and improving fatigue in older adults.


Nicotinamide Mononucleotide , Quality of Life , Aged , Humans , Japan , Physical Functional Performance , Sleep Quality
11.
J Clin Invest ; 131(22)2021 11 15.
Article En | MEDLINE | ID: mdl-34779414

Cerebral small vessel disease (CSVD) causes dementia and gait disturbance due to arteriopathy. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a hereditary form of CSVD caused by loss of high-temperature requirement A1 (HTRA1) serine protease activity. In CARASIL, arteriopathy causes intimal thickening, smooth muscle cell (SMC) degeneration, elastic lamina splitting, and vasodilation. The molecular mechanisms were proposed to involve the accumulation of matrisome proteins as substrates or abnormalities in transforming growth factor ß (TGF-ß) signaling. Here, we show that HTRA1-/- mice exhibited features of CARASIL-associated arteriopathy: intimal thickening, abnormal elastic lamina, and vasodilation. In addition, the mice exhibited reduced distensibility of the cerebral arteries and blood flow in the cerebral cortex. In the thickened intima, matrisome proteins, including the hub protein fibronectin (FN) and latent TGF-ß binding protein 4 (LTBP-4), which are substrates of HTRA1, accumulated. Candesartan treatment alleviated matrisome protein accumulation and normalized the vascular distensibility and cerebral blood flow. Furthermore, candesartan reduced the mRNA expression of Fn1, Ltbp-4, and Adamtsl2, which are involved in forming the extracellular matrix network. Our results indicate that these accumulated matrisome proteins may be potential therapeutic targets for arteriopathy in CARASIL.


Alopecia/drug therapy , Benzimidazoles/therapeutic use , Biphenyl Compounds/therapeutic use , Cerebral Infarction/drug therapy , High-Temperature Requirement A Serine Peptidase 1/physiology , Leukoencephalopathies/drug therapy , Spinal Diseases/drug therapy , Tetrazoles/therapeutic use , ADAMTS Proteins/analysis , Alopecia/complications , Animals , Cerebral Infarction/complications , Cerebrovascular Circulation/drug effects , Disease Progression , Extracellular Matrix Proteins/analysis , Latent TGF-beta Binding Proteins/analysis , Leukoencephalopathies/complications , Mice , Mice, Inbred C57BL , Recombinant Proteins/analysis , Spinal Diseases/complications , Transforming Growth Factor beta/physiology
12.
Microvasc Res ; 138: 104214, 2021 11.
Article En | MEDLINE | ID: mdl-34217740

Skeletal muscle hemodynamics, including that in jaw muscles, is an important in their functions and is modulated by aging. Marked blood flow increases mediated by parasympathetic vasodilation may be important for blood flow in the masseter muscle (MBF); however, the relationship between parasympathetic vasodilation and aging is unclear. We examined the effect of aging on parasympathetic vasodilation evoked by trigeminal afferent inputs and their mechanisms by investigating the MBF during stimulation of the lingual nerve (LN) in young and old urethane-anesthetized and vago-sympathectomized rats. Electrical stimulation of the central cut end of the LN elicited intensity- and frequency-dependent increases in MBF in young rats, while these increases were significantly reduced in old rats. Increases in the MBF evoked by LN stimulation in the young rats were greatly reduced by hexamethonium and atropine administration. Increases in MBF in young rats were produced by exogenous acetylcholine in a dose-dependent manner, whereas acetylcholine did not influence the MBF in old rats. Significant levels of muscarinic acetylcholine receptor type 1 (MR1) and type 3 (MR3) mRNA were observed in the masseter muscle in young rats, but not in old rats. Our results indicate that cholinergic parasympathetic reflex vasodilation evoked by trigeminal afferent inputs to the masseter muscle is reduced by aging and that this reduction may be mediated by suppression of the expression of MR1 and MR3 in the masseter muscle with age.


Aging/physiology , Arteries/innervation , Cholinergic Fibers/physiology , Masseter Muscle/blood supply , Parasympathetic Nervous System/physiology , Reflex , Trigeminal Nerve/physiology , Vasodilation , Acetylcholine/metabolism , Age Factors , Aging/metabolism , Animals , Cholinergic Fibers/metabolism , Electric Stimulation , Male , Masseter Muscle/metabolism , Parasympathetic Nervous System/metabolism , Rats, Wistar , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/metabolism , Regional Blood Flow , Sympathectomy , Trigeminal Nerve/metabolism , Vagotomy
13.
Front Neurosci ; 15: 647589, 2021.
Article En | MEDLINE | ID: mdl-34108855

The circadian clock possesses robust systems to maintain the rhythm approximately 24 h, from cellular to organismal levels, whereas aging is known to be one of the risk factors linked to the alternation of circadian physiology and behavior. The amount of many metabolites in the cells/body is altered with the aging process, and the most prominent metabolite among them is the oxidized form of nicotinamide adenine dinucleotide (NAD+), which is associated with posttranslational modifications of acetylation and poly-ADP-ribosylation status of circadian clock proteins and decreases with aging. However, how low NAD+ condition in cells, which mimics aged or pathophysiological conditions, affects the circadian clock is largely unknown. Here, we show that low NAD+ in cultured cells promotes PER2 to be retained in the cytoplasm through the NAD+/SIRT1 axis, which leads to the attenuated amplitude of Bmal1 promoter-driven luciferase oscillation. We found that, among the core clock proteins, PER2 is mainly affected in its subcellular localization by NAD+ amount, and a higher cytoplasmic PER2 localization was observed under low NAD+ condition. We further found that NAD+-dependent deacetylase SIRT1 is the regulator of PER2 subcellular localization. Thus, we anticipate that the altered PER2 subcellular localization by low NAD+ is one of the complex changes that occurs in the aged circadian clock.

14.
Biochem Biophys Res Commun ; 548: 155-160, 2021 04 09.
Article En | MEDLINE | ID: mdl-33640609

Living organisms contain a variety of endogenous peptides that function as significant regulators of many biological processes. Endogenous peptides are typically analyzed using liquid chromatography-mass spectrometry (LC-MS). However, due to the low efficiency of peptide extraction and low abundance of peptides in a single animal, LC-MS-based peptidomics studies have not facilitated an understanding of the individual differences and tissue specificity of peptide abundance. In this study, we developed a peptide extraction method followed by nano-flow LC-MS/MS analysis. This method enabled highly efficient and reproducible peptide extraction from sub-milligram quantities of hypothalamus dissected from a single animal. Diverse bioactive and authentic peptides were detected from a sample volume equivalent to 135 µg of hypothalamus. This method may be useful for elucidating individual differences and tissue specificity, as well as for facilitating the discovery of novel bioactive peptides and biomarkers and developing peptide therapeutics.


Hypothalamus/metabolism , Peptides/isolation & purification , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Chromatography, Liquid , Male , Mice, Inbred C57BL , Peptides/chemistry , Reproducibility of Results , Solubility
15.
J Gen Virol ; 102(3)2021 03.
Article En | MEDLINE | ID: mdl-33587029

Since 2013, equine-like G3 rotavirus (eG3) strains have been detected throughout the world, including in Japan, and the strains were found to be dominant in some countries. In 2016, the first eG3 outbreak in Japan occurred in Tomakomai, Hokkaido prefecture, and the strains became dominant in other Hokkaido areas the following year. There were no significant differences in the clinical characteristics of eG3 and non-eG3 rotavirus infections. The eG3 strains detected in Hokkaido across 2 years from 2016 to 2017 had DS-1-like constellations (i.e. G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2), and the genes were highly conserved (97.5-100 %). One strain, designated as To16-12 was selected as the representative strain for these strains, and all 11 genes of this strain (To16-12) exhibited the closest identity to one foreign eG3 strain (STM050) seen in Indonesia in 2015 and two eG3 strains (IS1090 and MI1125) in another Japanese prefecture in 2016, suggesting that this strain might be introduced into Japan from Indonesia. Sequence analyses of VP7 genes from animal and human G3 strains found worldwide did not identify any with close identity (>92 %) to eG3 strains, including equine RV Erv105. Analysis of another ten genes indicated that the eG3 strain had low similarity to G2P[4] strains, which are considered traditional DS-1-like strains, but high similarity to DS-1-like G1P[8] strains, which first appeared in Asia in 2012. These data suggest that eG3 strains were recently generated in Asia as mono-reassortant strain between DS-1-like G1P[8] strains and unspecified animal G3 strains. Our results indicate that rotavirus surveillance in the postvaccine era requires whole-genome analyses.


Gastroenteritis/epidemiology , Gastroenteritis/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , Child, Preschool , Disease Outbreaks , Feces/virology , Female , Genome, Viral/genetics , Genotype , Humans , Infant , Japan/epidemiology , Male , Phylogeny , RNA, Viral/genetics , Reassortant Viruses/classification , Reassortant Viruses/genetics
16.
J Physiol Sci ; 70(1): 22, 2020 Mar 31.
Article En | MEDLINE | ID: mdl-32234014

The skin temperature (Tm) of the orofacial area influences orofacial functions and is related to the blood flow (BF). Marked increases in BF mediated by parasympathetic vasodilation may be important for orofacial Tm regulation. Therefore, we examined the relationship between parasympathetic reflex vasodilation and orofacial Tm in anesthetized rats. Electrical stimulation of the central cut end of the lingual nerve (LN) elicited significant increases in BF and Tm in the lower lip. These increases were significantly reduced by hexamethonium, but not atropine. VIP agonist increased both BF and Tm in the lower lip. The activation of the superior cervical sympathetic trunk (CST) decreased BF and Tm in the lower lip; however, these decreases were significantly inhibited by LN stimulation. Our results suggest that parasympathetic vasodilation plays an important role in the maintaining the hemodynamics and Tm in the orofacial area, and that VIP may be involved in this response.


Afferent Pathways/physiology , Lip/blood supply , Mouth/blood supply , Parasympathetic Nervous System/blood supply , Trigeminal Ganglion/physiology , Animals , Atropine/pharmacology , Bronchodilator Agents/pharmacology , Electric Stimulation/methods , Ganglionic Blockers/pharmacology , Hexamethonium/pharmacology , Lip/drug effects , Lip/innervation , Male , Mouth/drug effects , Mouth/innervation , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/physiology , Rats , Rats, Wistar , Temperature , Vasodilation/drug effects , Vasodilation/physiology
17.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R940-R949, 2020 05 01.
Article En | MEDLINE | ID: mdl-32209022

We examined the relationship between hemodynamics in the three major salivary glands and salivary secretion in urethane-anesthetized and sympathectomized type 2 diabetic and nondiabetic rats via laser speckle imaging and by collecting the saliva. Lingual nerve stimulation elicited rapid increases in glandular blood flow and induced salivary secretion from the three glands in both diabetic and nondiabetic rats. In the parotid gland, the magnitude of blood flow increase and salivary secretion was significantly lower in the diabetic rats when compared with the nondiabetic rats; however, this was not observed in the other glands. Although the intravenous administration of acetylcholine increased blood flow in the parotid gland in a dose-dependent manner, the response was significantly lower in the diabetic rats when compared with the nondiabetic rats. Similarly, mRNA expression levels of M1 and M3 muscarinic acetylcholine receptors in the parotid gland were relatively lower in the diabetic rats compared with the nondiabetic rats. Our results indicate that type 2 diabetes impairs parasympathetic vasodilation and salivary secretion in the parotid gland and suggest that disturbances in the cholinergic vasodilator pathway may contribute to the underlying mechanisms involved in the disruption of parasympathetic nerve-mediated glandular vasodilation.


Diabetes Mellitus, Type 2/physiopathology , Diabetic Neuropathies/physiopathology , Parasympathetic Nervous System/physiopathology , Parotid Gland/blood supply , Parotid Gland/physiopathology , Salivation , Vasodilation , Xerostomia/physiopathology , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetic Neuropathies/etiology , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Disease Models, Animal , Down-Regulation , Male , Parotid Gland/metabolism , Rats, Inbred OLETF , Receptor, Muscarinic M1/genetics , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Xerostomia/etiology , Xerostomia/genetics , Xerostomia/metabolism
18.
PLoS One ; 14(5): e0216960, 2019.
Article En | MEDLINE | ID: mdl-31095630

ADP ribosylation factor 6 (Arf6) is a small GTPase that regulates various neuronal events including formation of the axon, dendrites and dendritic spines, and synaptic plasticity through actin cytoskeleton remodeling and endosomal trafficking. EFA6C, also known as Psd2, is a guanine nucleotide exchange factor for Arf6 that is preferentially expressed in the cerebellar cortex of adult mice, particularly in Purkinje cells. However, the roles of EFA6C in cerebellar development and functions remain unknown. In this study, we generated global EFA6C knockout (KO) mice using the CRISPR/Cas9 system and investigated their cerebellar phenotypes by histological and behavioral analyses. Histological analyses revealed that EFA6C KO mice exhibited normal gross anatomy of the cerebellar cortex, in terms of the thickness and cellularity of each layer, morphology of Purkinje cells, and distribution patterns of parallel fibers, climbing fibers, and inhibitory synapses. Electron microscopic observation of the cerebellar molecular layer revealed that the density of asymmetric synapses of Purkinje cells was significantly lower in EFA6C KO mice compared with wild-type control mice. However, behavioral analyses using accelerating rotarod and horizontal optokinetic response tests failed to detect any differences in motor coordination, learning or adaptation between the control and EFA6C KO mice. These results suggest that EFA6C plays ancillary roles in cerebellar development and motor functions.


ADP-Ribosylation Factors/genetics , Cerebellum/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Motor Activity , Purkinje Cells/cytology , Synapses/physiology , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Animals , Axons/metabolism , Behavior, Animal , Cerebellar Cortex/metabolism , Dendrites/metabolism , Female , Guanine Nucleotide Exchange Factors/genetics , Kinetics , Male , Mice , Mice, Knockout , Neuronal Plasticity , Neurons/metabolism , Phenotype
19.
Sci Rep ; 8(1): 17134, 2018 11 20.
Article En | MEDLINE | ID: mdl-30459452

Chondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and plays an important part in organogenesis. To elucidate the roles of CS for craniofacial development, we analyzed the craniofacial morphology in CS N-acetylgalactosaminyltransferase-1 (T1) gene knockout (KO) mice. T1KO mice showed the impaired intramembranous ossification in the skull, and the final skull shape of adult mice included a shorter face, higher and broader calvaria. Some of T1KO mice exhibited severe facial developmental defect, such as eye defects and cleft lip and palate, causing embryonic lethality. At the postnatal stages, T1KO mice with severely reduced CS amounts showed malocclusion, general skeletal dysplasia and skin hyperextension, closely resembling Ehlers-Danlos syndrome-like connective tissue disorders. The production of collagen type 1 was significantly downregulated in T1KO mice, and the deposition of CS-binding molecules, Wnt3a, was decreased with CS in extracellular matrices. The collagen fibers were irregular and aggregated, and connective tissues were dysorganized in the skin and calvaria of T1KO mice. These results suggest that CS regulates the shape of the craniofacial skeleton by modulating connective tissue organization and that the remarkable reduction of CS induces hypoplasia of intramembranous ossification and cartilage anomaly, resulting in skeletal dysplasia.


Craniofacial Abnormalities/etiology , Head/abnormalities , N-Acetylgalactosaminyltransferases/genetics , Animals , Animals, Newborn , Cartilage/pathology , Chondroitin Sulfates/metabolism , Collagen/genetics , Collagen/metabolism , Craniofacial Abnormalities/genetics , Ehlers-Danlos Syndrome/etiology , Female , Head/embryology , Mice, Knockout , N-Acetylgalactosaminyltransferases/metabolism , Osteochondrodysplasias/etiology , Osteogenesis/genetics , Pregnancy , Wnt3A Protein/genetics , Wnt3A Protein/metabolism
20.
J Nutr Sci Vitaminol (Tokyo) ; 64(4): 265-270, 2018.
Article En | MEDLINE | ID: mdl-30175789

Glucosylceramide (GlcCer) is present in foods such as barley, corn, and wheat flour. GlcCer derived from different foods has differences in its physiological effects, depending on the sphingoid backbone and constituent fatty acids. In this study, we investigated the moisturizing and skin conditioning effects of GlcCer derived from torula yeast (Candida utilis) in healthy human subjects. The participants were randomly distributed in a crossover, double-blind comparative manner. Seventeen volunteers were orally administered both 1.8 mg/d of GlcCer derived from torula yeast and a placebo for 4 wk. Before and after oral administration, transepidermal water loss (TEWL) was measured and the objective skin condition observation and a questionnaire on skin condition were conducted. The primary endpoint was TEWL; secondary endpoints included the objective and subjective skin conditions. The change in TEWL over the study period on the forearm was -0.97±0.48 and -1.26±0.46 g/m2•h in the placebo and GlcCer groups, respectively, with significantly lower (p=0.01) TEWL observed in the GlcCer group. Brown spots increased in the placebo group but significantly decreased in the GlcCer group (p=0.04). Although chapped skin worsened in the placebo group, it significantly improved in the GlcCer group (p=0.04). The use of torula yeast-derived GlcCer as a functional cosmeceutical food is a viable option to ameliorate skin conditions, including improvement in skin barrier function, reduction of brown spots, and fixation of chapped skin.


Candida/chemistry , Dietary Supplements , Glucosylceramides/therapeutic use , Skin Diseases/therapy , Skin/physiopathology , Adult , Cold Temperature/adverse effects , Cross-Over Studies , Double-Blind Method , Female , Forearm , Humans , Humidity/adverse effects , Japan , Male , Middle Aged , Seasons , Severity of Illness Index , Skin/immunology , Skin/metabolism , Skin Diseases/immunology , Skin Diseases/metabolism , Skin Diseases/physiopathology , Skin Pigmentation , Water/metabolism
...