Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Diabetes Metab Syndr Obes ; 16: 515-522, 2023.
Article in English | MEDLINE | ID: mdl-36852180

ABSTRACT

Background and Aims: SARS-CoV-2 infection has been recorded in 230 countries to date. Obesity has a negative impact on one's quality of life and is one of the main causes of mortality globally. Obesity affects the immune system, making the host more susceptible to infectious infections. Also, obesity commonly provokes the severity of respiratory diseases so the correlation of LEP rs7799039 Polymorphism in corpulent patients with COVID-19 infection was clearly investigated in the current study. Methods: A total of 232 patients were recruited, 116 patients were obese with COVID-19 infection, and 116 patients were non obese COVID-19. Fasting blood glucose test (FBG), hemoglobin A1C (HbA1C), complete blood count (CBC), international normalized ratio (INR), urea, alanine transaminase (ALT), aspartate aminotransferase (AST), D dimer and C-reactive protein (CRP) were estimated. C.T. scan was performed for each patient, and C.T. severity score was calculated. Genotyping for the leptin rs7799039 SNPs was performed by TaqMan® (Applied Biosystems Step One TM Real-time PCR). Results: Regarding LEP polymorphism, all individuals of non-obese groups significantly had the homozygous allele GG (100%), whereas only 56% of obese groups had GG alleles (P = 0.001). The severity scores significantly (P = 0.001) varied regarding LEP polymorphism regarding Rs7799039, where the largest proportion of those with Grade IV had the homozygous allele AA (57.1%). Conclusion: There was a correlation between the leptin gene allelic discrimination and COVID-19 CT brutality in obese patients. The A allele was considered a risk factor for severity in COVID-19 patients while the G allele contributes to decreasing that risk.

2.
Infect Drug Resist ; 15: 545-554, 2022.
Article in English | MEDLINE | ID: mdl-35221699

ABSTRACT

PURPOSE: The developed resistance of pathogenic microorganisms towards the currently used antimicrobial agents requires the fast search for newer potent antimicrobials. One of the most important ways to combat the previously mentioned disaster is the use of natural alternatives like medicinal plants. Our study aimed to estimate the anti-inflammatory property, and antibacterial effects of probiotics Lactiplantibacillus plantarum and ethanol extracts of Lawsonia inermis leaves against Staphylococcus aureus when they were used separately or collectively as synergism. MATERIAL AND METHODS: Experimentally induced infected wound model in mice was created and divided into 10 groups then treated for two days by L. plantarum and L. inermis individually or in combination, followed by biochemical assays. The antibacterial, anti-inflammatory, and wound healing activity were evaluated through histopathological sections taken before and after treatment. RESULTS: Our results revealed that L. plantarum and L. inermis mixture could inhibit growth of S. aureus and decrease the minimal inhibitory concentration (MIC) of L. plantarum to 2 mg/mL. The mixture decreased level of both interleukin 6 (IL-6) and interferon-alpha (TNF-α) to a level near the normal uninfected group. Histopathological study showed that animals treated with both L. plantarum and L. inermis had achieved almost 90% healing. CONCLUSION: These results suggest that L. plantarum and L. inermis mixture has synergistic effect on healing of infected wound.

3.
J Mater Chem B ; 5(42): 8366-8377, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-32264505

ABSTRACT

Peri-implantitis is a severe condition affecting the success of transmucosal dental implants: tissue healing is severely limited by the inflammatory processes that come about to control homeostasis in the surrounding tissues. The main cause of peri-implantitis is bacterial biofilm infection; gingival fibroblasts play a pivotal role in regulating the inflammatory cascades. A new technology aimed at preventing bacterial colonization of titanium (Ti) implants, and enhancing the spread of gingival fibroblasts, is presented. Using electro-spinning, mirror-polished Ti disks were uniformly coated with keratin fibers obtained from discarded wool via sulfitolysis. The keratin-coated surfaces were then doped with silver (Ag) to introduce antibacterial properties, using different concentrations of silver nitrate as a precursor (0.01, 0.05 and 0.1 M). The resulting specimens were characterized in terms of morphology and chemical composition by FESEM, FTIR and XPS, revealing silver concentrations between 1.7 and 1.9%. Silver release into the medium was evaluated in the presence of cells (α-MEM) or bacteria (LB) by ICP; release was 0.2-1.4 mg l-1 for α-MEM, and 10-40 mg l-1 for LB. The antibacterial properties of the Ag-doped specimens were tested against a multidrug-resistant Staphylococcus aureus biofilm through morphology (FESEM) and metabolic assay (XTT); reduction in viability was significant (p < 0.05; >80% reduction within 72 h). Lastly, the cytocompatibility of the specimens was confirmed using human primary gingival fibroblasts, whose viability, spread and matrix deposition were found to be comparable to those of untreated Ti polished controls (p > 0.05). Thus, Ag surface enrichment was effective in reducing viability and maturation of S. aureus biofilm, without compromising human cell viability. Moreover, cell spread was found to be very sensitive to keratin fiber stimulation. The strategy thus appears to be very promising to introduce surface features in line with the main requirements for transmucosal dental implants.

SELECTION OF CITATIONS
SEARCH DETAIL