Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Pediatr Neurol ; 156: 119-127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761643

ABSTRACT

Fetal cerebral ventriculomegaly is one of the most common fetal neurological disorders identified prenatally by neuroimaging. The challenges in the evolving landscape of conditions like fetal cerebral ventriculomegaly involve accurate diagnosis and how best to provide prenatal counseling regarding prognosis as well as postnatal management and care of the infant. The purpose of this narrative review is to discuss the literature on fetal ventriculomegaly, including postnatal management and neurodevelopmental outcome, and to provide practice recommendations for pediatric neurologists.


Subject(s)
Hydrocephalus , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/diagnosis , Pregnancy , Neurologists/standards , Fetal Diseases/diagnosis , Female , Prenatal Diagnosis/standards , Pediatrics/standards , Practice Guidelines as Topic/standards
2.
Semin Fetal Neonatal Med ; 29(1): 101521, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38658296

ABSTRACT

Interdisciplinary fetal neonatal neurology (FNN) training requires integration of reproductive health factors into evaluations of the maternal-placental-fetal (MPF) triad, neonate, and child over the first 1000 days. Serial events that occur before one or multiple pregnancies impact successive generations. A maternal-child dyad history highlights this continuity of health risk, beginning with a maternal grandmother's pregnancy. Her daughter was born preterm and later experienced polycystic ovarian syndrome further complicated by cognitive and mental health disorders. Medical problems during her pregnancy contributed to MPF triad diseases that resulted in her son's extreme prematurity. Postpartum maternal death from the complications of diabetic ketoacidosis and her child's severe global neurodevelopmental delay were adverse mother-child outcomes. A horizontal/vertical diagnostic approach to reach shared clinical decisions during FNN training requires perspectives of a dynamic neural exposome. Career-long learning is then strengthened by continued interactions from al stakeholders. Developmental origins theory applied to neuroplasticity principles help interpret phenotypic expressions as dynamic gene-environment interactions across a person's lifetime. Debiasing strategies applied to the cognitive process reduce bias to preserve therapeutic and prognostic accuracy. Social determinants of health are essential components of this strategy to be initiated during FNN training. Reduction of the global burden of neurologic disorders requires applying the positive effects from reproductive and pregnancy exposomes that will benefit the neural exposome across the lifespan.


Subject(s)
Neurology , Humans , Female , Pregnancy , Infant, Newborn , Neurology/methods , Reproductive Health , Neonatology/methods
3.
Semin Fetal Neonatal Med ; 29(1): 101530, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38670881

ABSTRACT

Interdisciplinary fetal-neonatal neurology (FNN) training strengthens neonatal neurocritical care (NNCC) clinical decisions. Neonatal neurological phenotypes require immediate followed by sustained neuroprotective care path choices through discharge. Serial assessments during neonatal intensive care unit (NICU) rounds are supplemented by family conferences and didactic interactions. These encounters collectively contribute to optimal interventions yielding more accurate outcome predictions. Maternal-placental-fetal (MPF) triad disease pathways influence postnatal medical complications which potentially reduce effective interventions and negatively impact outcome. The science of uncertainty regarding each neonate's clinical status must consider timing and etiologies that are responsible for fetal and neonatal brain disorders. Shared clinical decisions among all stakeholders' balance "fast" (heuristic) and "slow" (analytic) thinking as more information is assessed regarding etiopathogenetic effects that impair the developmental neuroplasticity process. Two case vignettes stress the importance of FNN perspectives during NNCC that integrates this dual cognitive approach. Clinical care paths evaluations are discussed for an encephalopathic extremely preterm and full-term newborn. Recognition of cognitive errors followed by debiasing strategies can improve clinical decisions during NICU care. Re-evaluations with serial assessments of examination, imaging, placental-cord, and metabolic-genetic information improve clinical decisions that maintain accuracy for interventions and outcome predictions. Discharge planning includes shared decisions among all stakeholders when coordinating primary care, pediatric subspecialty, and early intervention participation. Prioritizing social determinants of healthcare during FNN training strengthens equitable career long NNCC clinical practice, education, and research goals. These perspectives contribute to a life course brain health capital strategy that will benefit all persons across each and successive lifespans.


Subject(s)
Neonatology , Humans , Infant, Newborn , Neonatology/education , Neurology/education , Female , Critical Care/methods , Pregnancy , Intensive Care Units, Neonatal
5.
Semin Fetal Neonatal Med ; 29(1): 101522, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38637242

ABSTRACT

Interdisciplinary fetal-neonatal neurology (FNN) training considers a woman's reproductive and pregnancy health histories when assessing the "four great neonatal neurological syndromes". This maternal-child dyad exemplifies the symptomatic neonatal minority, compared with the silent majority of healthy children who experience preclinical diseases with variable expressions over the first 1000 days. Healthy maternal reports with reassuring fetal surveillance testing preceded signs of fetal distress during parturition. An encephalopathic neonate with seizures later exhibited childhood autistic spectrum behaviors and intractable epilepsy correlated with identified genetic biomarkers. A systems biology approach to etiopathogenesis guides the diagnostic process to interpret phenotypic form and function. Evolving gene-environment interactions expressed by changing phenotypes reflect a dynamic neural exposome influenced by reproductive and pregnancy health. This strategy considers critical/sensitive periods of neuroplasticity beyond two years of life to encompass childhood and adolescence. Career-long FNN experiences reenforce earlier training to strengthen the cognitive process and minimize cognitive biases when assessing children or adults. Prioritizing social determinants of healthcare for persons with neurologic disorders will help mitigate the global burden of brain diseases for all women and children.


Subject(s)
Gene-Environment Interaction , Humans , Female , Infant, Newborn , Pregnancy , Neurology , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics
6.
Front Neurol ; 15: 1335933, 2024.
Article in English | MEDLINE | ID: mdl-38352135

ABSTRACT

Fetal-neonatal neurologists (FNNs) consider diagnostic, therapeutic, and prognostic decisions strengthened by interdisciplinary collaborations. Bio-social perspectives of the woman's health influence evaluations of maternal-placental-fetal (MPF) triad, neonate, and child. A dual cognitive process integrates "fast thinking-slow thinking" to reach shared decisions that minimize bias and maintain trust. Assessing the science of uncertainty with uncertainties in science improves diagnostic choices across the developmental-aging continuum. Three case vignettes highlight challenges that illustrate this approach. The first maternal-fetal dyad involved a woman who had been recommended to terminate her pregnancy based on an incorrect diagnosis of an encephalocele. A meningocele was subsequently identified when she sought a second opinion with normal outcome for her child. The second vignette involved two pregnancies during which fetal cardiac rhabdomyoma was identified, suggesting tuberous sclerosis complex (TSC). One woman sought an out-of-state termination without confirmation using fetal brain MRI or postmortem examination. The second woman requested pregnancy care with postnatal evaluations. Her adult child experiences challenges associated with TSC sequelae. The third vignette involved a prenatal diagnosis of an open neural tube defect with arthrogryposis multiplex congenita. The family requested prenatal surgical closure of the defect at another institution at their personal expense despite receiving a grave prognosis. The subsequent Management of Myelomeningocele Study (MOMS) would not have recommended this procedure. Their adult child requires medical care for global developmental delay, intractable epilepsy, and autism. These three evaluations involved uncertainties requiring shared clinical decisions among all stakeholders. Falsely negative or misleading positive interpretation of results reduced chances for optimal outcomes. FNN diagnostic skills require an understanding of dynamic gene-environment interactions affecting reproductive followed by pregnancy exposomes that influence the MPF triad health with fetal neuroplasticity consequences. Toxic stressor interplay can impair the neural exposome, expressed as anomalous and/or destructive fetal brain lesions. Functional improvements or permanent sequelae may be expressed across the lifespan. Equitable and compassionate healthcare for women and families require shared decisions that preserve pregnancy health, guided by person-specific racial-ethnic, religious, and bio-social perspectives. Applying developmental origins theory to neurologic principles and practice supports a brain health capital strategy for all persons across each generation.

8.
Front Neurol ; 14: 1227195, 2023.
Article in English | MEDLINE | ID: mdl-37638177

ABSTRACT

The withdrawal of life-sustaining therapies is frequently considered for pediatric patients with severe acute brain injuries who are admitted to the intensive care unit. However, it is worth noting that some children with a resultant poor neurological status may ultimately survive and achieve a positive neurological outcome. Evidence suggests that adults with hidden consciousness may have a more favorable prognosis compared to those without it. Currently, no treatable network disorders have been identified in cases of severe acute brain injury, aside from seizures detectable through an electroencephalogram (EEG) and neurostimulation via amantadine. In this report, we present three cases in which multimodal brain network evaluation played a helpful role in patient care. This evaluation encompassed various assessments such as continuous video EEG, visual-evoked potentials, somatosensory-evoked potentials, auditory brainstem-evoked responses, resting-state functional MRI (rs-fMRI), and passive-based and command-based task-based fMRI. It is worth noting that the latter three evaluations are unique as they have not yet been established as part of the standard care protocol for assessing acute brain injuries in children with suppressed consciousness. The first patient underwent serial fMRIs after experiencing a coma induced by trauma. Subsequently, the patient displayed improvement following the administration of antiseizure medication to address abnormal signals. In the second case, a multimodal brain network evaluation uncovered covert consciousness, a previously undetected condition in a pediatric patient with acute brain injury. In both patients, this discovery potentially influenced decisions concerning the withdrawal of life support. Finally, the third patient serves as a comparative control case, demonstrating the absence of detectable networks. Notably, this patient underwent the first fMRI prior to experiencing brain death as a pediatric patient. Consequently, this case series illustrates the clinical feasibility of employing multimodal brain network evaluation in pediatric patients. This approach holds potential for clinical interventions and may significantly enhance prognostic capabilities beyond what can be achieved through standard testing methods alone.

9.
Pediatr Neurol ; 145: 74-79, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37290231

ABSTRACT

BACKGROUND: Fetal neurology is a rapidly evolving field. Consultations aim to diagnose, prognosticate, and coordinate prenatal and perinatal management along with other specialists and counsel expectant parents. Practice parameters and guidelines are limited. METHODS: A 48-question online survey was administered to child neurologists. Questions targeted current care practices and perceived priorities for the field. RESULTS: Representatives from 43 institutions in the United States responded; 83% had prenatal diagnosis centers, and the majority performed on-site neuroimaging. The earliest gestational age for fetal magnetic resonance imaging was variable. Annual consultations ranged from <20 to >100 patients. Fewer than half (n = 17.40%) were subspecialty trained. Most respondents (n = 39.91%) were interested in participating in a collaborative registry and educational initiatives. CONCLUSIONS: The survey highlights heterogeneity in clinical practice. Large multisite and multidisciplinary collaborations are essential to gather data that inform outcomes for fetuses evaluated across institutions through registries as well as creation of guidelines and educational material.


Subject(s)
Neurology , Female , Humans , Pregnancy , Fetus , Gestational Age , Neurologists , Prenatal Diagnosis/methods , United States
10.
Front Public Health ; 11: 1122009, 2023.
Article in English | MEDLINE | ID: mdl-36891340

ABSTRACT

Aim: The provisions of the United Nation's Sustainable Development Goals (SDGs) for disability-inclusive education have stimulated a growing interest in ascertaining the prevalence of children with developmental disabilities globally. We aimed to systematically summarize the prevalence estimates of developmental disabilities in children and adolescents reported in systematic reviews and meta-analyses. Methods: For this umbrella review we searched PubMed, Scopus, Embase, PsycINFO, and Cochrane Library for systematic reviews published in English between September 2015 and August 2022. Two reviewers independently assessed study eligibility, extracted the data, and assessed risk of bias. We reported the proportion of the global prevalence estimates attributed to country income levels for specific developmental disabilities. Prevalence estimates for the selected disabilities were compared with those reported in the Global Burden of Disease (GBD) Study 2019. Results: Based on our inclusion criteria, 10 systematic reviews reporting prevalence estimates for attention-deficit/hyperactivity disorder, autism spectrum disorder, cerebral palsy, developmental intellectual disability, epilepsy, hearing loss, vision loss and developmental dyslexia were selected from 3,456 identified articles. Global prevalence estimates were derived from cohorts in high-income countries in all cases except epilepsy and were calculated from nine to 56 countries. Sensory impairments were the most prevalent disabilities (approximately 13%) and cerebral palsy was the least prevalent disability (approximately 0.2-0.3%) based on the eligible reviews. Pooled estimates for geographical regions were available for vision loss and developmental dyslexia. All studies had a moderate to high risk of bias. GBD prevalence estimates were lower for all disabilities except cerebral palsy and intellectual disability. Conclusion: Available estimates from systematic reviews and meta-analyses do not provide representative evidence on the global and regional prevalence of developmental disabilities among children and adolescents due to limited geographical coverage and substantial heterogeneity in methodology across studies. Population-based data for all regions using other approaches such as reported in the GBD Study are warranted to inform global health policy and intervention.


Subject(s)
Autism Spectrum Disorder , Cerebral Palsy , Dyslexia , Epilepsy , Intellectual Disability , Adolescent , Child , Humans , Autism Spectrum Disorder/epidemiology , Cerebral Palsy/epidemiology , Developmental Disabilities/epidemiology , Intellectual Disability/epidemiology , Prevalence , Systematic Reviews as Topic
11.
Front Neurol ; 14: 1321674, 2023.
Article in English | MEDLINE | ID: mdl-38288328

ABSTRACT

An interdisciplinary fetal-neonatal neurology (FNN) program over the first 1,000 days teaches perspectives of the neural exposome that are applicable across the life span. This curriculum strengthens neonatal neurocritical care, pediatric, and adult neurology training objectives. Teaching at maternal-pediatric hospital centers optimally merges reproductive, pregnancy, and pediatric approaches to healthcare. Phenotype-genotype expressions of health or disease pathways represent a dynamic neural exposome over developmental time. The science of uncertainty applied to FNN training re-enforces the importance of shared clinical decisions that minimize bias and reduce cognitive errors. Trainees select mentoring committee participants that will maximize their learning experiences. Standardized questions and oral presentations monitor educational progress. Master or doctoral defense preparation and competitive research funding can be goals for specific individuals. FNN principles applied to practice offer an understanding of gene-environment interactions that recognizes the effects of reproductive health on the maternal-placental-fetal triad, neonate, child, and adult. Pre-conception and prenatal adversities potentially diminish life-course brain health. Endogenous and exogenous toxic stressor interplay (TSI) alters the neural exposome through maladaptive developmental neuroplasticity. Developmental disorders and epilepsy are primarily expressed during the first 1,000 days. Communicable and noncommunicable illnesses continue to interact with the neural exposome to express diverse neurologic disorders across the lifespan, particularly during the critical/sensitive time periods of adolescence and reproductive senescence. Anomalous or destructive fetal neuropathologic lesions change clinical expressions across this developmental-aging continuum. An integrated understanding of reproductive, pregnancy, placental, neonatal, childhood, and adult exposome effects offers a life-course perspective of the neural exposome. Exosome research promises improved disease monitoring and drug delivery starting during pregnancy. Developmental origins of health and disease principles applied to FNN practice anticipate neurologic diagnoses with interventions that can benefit successive generations. Addressing health care disparities in the Global South and high-income country medical deserts require constructive dialogue among stakeholders to achieve medical equity. Population health policies require a brain capital strategy that reduces the global burden of neurologic diseases by applying FNN principles and practice. This integrative neurologic care approach will prolong survival with an improved quality of life for persons across the lifespan confronted with neurological disorders.

12.
Biomedicines ; 10(12)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36552046

ABSTRACT

Most children with developmental disabilities (DD) live in resource-limited countries (LMIC) or high-income country medical deserts (HICMD). A social contract between healthcare providers and families advocates for accurate diagnoses and effective interventions to treat diseases and toxic stressors. This bio-social model emphasizes reproductive health of women with trimester-specific maternal and pediatric healthcare interactions. Lifelong neuronal connectivity is more likely established across 80% of brain circuitries during the first 1000 days. Maladaptive gene-environment (G x E) interactions begin before conception later presenting as maternal-placental-fetal (MPF) triad, neonatal, or childhood neurologic disorders. Synergy between obstetrical and pediatric healthcare providers can reduce neurologic morbidities. Partnerships between healthcare providers and families should begin during the first 1000 days to address diseases more effectively to moderate maternal and childhood adverse effects. This bio-social model lowers the incidence and lessens the severity of sequalae such as DD. Access to genetic-metabolomic, neurophysiologic and neuroimaging evaluations enhances clinical decision-making for more effective interventions before full expression of neurologic dysfunction. Diagnostic accuracy facilitates developmental interventions for effective preschool planning. A description of a mother-child pair in a HIC emphasizes the time-sensitive importance for early interventions that influenced brain health throughout childhood. Partnership by her parents with healthcare providers and educators provided effective healthcare and lessened adverse effects. Effective educational interventions were later offered through her high school graduation. Healthcare disparities in LMIC and HICMD require that this bio-social model of care begin before the first 1000 days to effectively treat the most vulnerable women and children. Prioritizing family planning followed by prenatal, neonatal and child healthcare improves wellness and brain health. Familiarity with educational neuroscience for teachers applies neurologic diagnoses for effective individual educational plans. Integrating diversity and inclusion into medical and educational services cross socioeconomic, ethnic, racial, and cultural barriers with life-course benefits. Families require knowledge to recognize risks for their children and motivation to sustain relationships with providers and educators for optimal outcomes. The WHO sustainable development goals promote brain health before conception through the first 1000 days. Improved education, employment, and social engagement for all persons will have intergenerational and transgenerational benefits for communities and nations.

13.
Semin Pediatr Neurol ; 42: 100970, 2022 07.
Article in English | MEDLINE | ID: mdl-35868730

ABSTRACT

Gene-environment (G x E) interactions significantly influence neurologic outcomes. The maternal-placental-fetal (MPF) triad, neonate, or child less than 2 years may first exhibit significant brain disorders. Neuroplasticity during the first 1000 days will more likely result in life-long effects given critical periods of development. Developmental origins and life-course principles help recognize changing neurologic phenotypes across ages. Dual diagnostic approaches are discussed using representative case scenarios to highlight time-dependent G x E interactions that contribute to neurologic sequelae. Horizontal analyses identify clinically relevant phenotypic form and function at different ages. Vertical analyses integrate the approach using systems-biology from genetic through multi-organ system interactions during each developmental age to understand etiopathogenesis. The process of ontogenetic adaptation results in immediate or delayed positive and negative outcomes specific to the developmental niche, expressed either as a healthy child or one with neurologic sequelae. Maternal immune activation, ischemic placental disease, and fetal inflammatory response represent prenatal disease pathways that contribute to fetal brain injuries. These processes involve G x E interactions within the MPF triad, phenotypically expressed as fetal brain malformations or destructive injuries within the MPF triad. A neonatal minority express encephalopathy, seizures, stroke, and encephalopathy of prematurity as a continuum of trimester-specific G x E interactions. This group may later present with childhood sequelae. A healthy neonatal majority present at older ages with sequelae such as developmental disorders, epilepsy, mental health diseases, tumors, and neurodegenerative disease, often during the first 1000 days. Effective preventive, rescue, and reparative neuroprotective strategies require consideration of G x E interactions interplay over time. Addressing maternal and pediatric health disparities will maximize medical equity with positive global outcomes that reduce the burden of neurologic diseases across the lifespan.


Subject(s)
Brain Diseases , Fetal Diseases , Neurodegenerative Diseases , Child , Female , Fetal Diseases/diagnosis , Gene-Environment Interaction , Humans , Placenta/pathology , Pregnancy
16.
J Perinatol ; 42(2): 165-168, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34848849

ABSTRACT

Global estimates show that 10-20% of persons express developmental disability. During critical and sensitive periods of developmental neuroplasticity over the first 1000 days, adverse gene-environment interactions are likely to contribute to permanent life-long disabilities and early mortality. This article describes fetal-neonatal neurology (FNN) program development that integrates vertical and horizontal diagnostic perspectives. Trimester-specific conditions to the maternal-placental-fetal triad begin at conception, followed by pediatric patient care over the first two years of life to address changing phenotypic form and function. While fetal and neonatal neurology trainees prepare to offer person-centric healthcare, population-based considerations address obstacles to optimal health relevant to resource-rich and poor nations. Maternal and pediatric care practices over the first 1000 days underscore equitable health policy. Global initiatives apply geographic distance, biosocial dynamics, and cultural differences to developmental origins and life-course theories, to more effectively reduce disease burden over the life continuum.


Subject(s)
Neurology , Placenta , Child , Continuity of Patient Care , Female , Fetus , Humans , Infant, Newborn , Pregnancy , Prenatal Care
17.
Children (Basel) ; 8(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34828658

ABSTRACT

Hypertensive disorders of pregnancy (HDP) contribute to adverse gene-environment interactions prior to conception and continue throughout pregnancy. Embryonic/fetal brain disorders occur from interactions between genetic susceptibilities interacting with acquired diseases or conditions affecting the maternal/placental fetal (MPF) triad. Trimester-specific pathophysiological mechanisms, such as maternal immune activation and ischemic placental syndrome, contribute to adverse peripartum, neonatal and childhood outcomes. Two diagnostic approaches provide timelier diagnoses over the first 1000 days from conception until two years of age. Horizontal analyses assess the maturation of the triad, neonate and child. Vertical analyses consider systems-biology from genetic, molecular, cellular, tissue through organ networks during each developmental niche. Disease expressions associated with HDP have cumulative adverse effects across the lifespan when subjected to subsequent adverse events. Critical/sensitive periods of developmental neuroplasticity over the first 1000 days are more likely to result in permanent sequelae. Novel diagnostic approaches, beginning during pre-conception, will facilitate the development of effective preventive, rescue and reparative neurotherapeutic strategies in response to HDP-related trimester-specific disease pathways. Public health policies require the inclusion of women's health advocacy during and beyond their reproductive years to reduce sequelae experienced by mothers and their offspring. A lower global burden of neurologic disease from HDP will benefit future generations.

19.
Front Pediatr ; 9: 683138, 2021.
Article in English | MEDLINE | ID: mdl-34408995

ABSTRACT

Gene-environment interactions begin at conception to influence maternal/placental/fetal triads, neonates, and children with short- and long-term effects on brain development. Life-long developmental neuroplasticity more likely results during critical/sensitive periods of brain maturation over these first 1,000 days. A fetal/neonatal program (FNNP) applying this perspective better identifies trimester-specific mechanisms affecting the maternal/placental/fetal (MPF) triad, expressed as brain malformations and destructive lesions. Maladaptive MPF triad interactions impair progenitor neuronal/glial populations within transient embryonic/fetal brain structures by processes such as maternal immune activation. Destructive fetal brain lesions later in pregnancy result from ischemic placental syndromes associated with the great obstetrical syndromes. Trimester-specific MPF triad diseases may negatively impact labor and delivery outcomes. Neonatal neurocritical care addresses the symptomatic minority who express the great neonatal neurological syndromes: encephalopathy, seizures, stroke, and encephalopathy of prematurity. The asymptomatic majority present with neurologic disorders before 2 years of age without prior detection. The developmental principle of ontogenetic adaptation helps guide the diagnostic process during the first 1,000 days to identify more phenotypes using systems-biology analyses. This strategy will foster innovative interdisciplinary diagnostic/therapeutic pathways, educational curricula, and research agenda among multiple FNNP. Effective early-life diagnostic/therapeutic programs will help reduce neurologic disease burden across the lifespan and successive generations.

SELECTION OF CITATIONS
SEARCH DETAIL
...