Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37374098

ABSTRACT

Air displacement plethysmography (ADP) is a widespread technique for assessing global obesity in both health and disease. The reliability of ADP has been demonstrated by studies focused on duplicate trials. The present study was purported to evaluate learning effects on the reliability of body composition assessment using the BOD POD system, the sole commercially available ADP instrument. To this end, quadruplicate trials were performed on a group of 105 subjects (51 women and 54 men). We estimated measurement error from pairs of consecutive trials-(1,2), (2,3), and (3,4)-to test the hypothesis that early measurements are subject to larger errors. Indeed, statistical analysis revealed that measures of reliability inferred from the first two trials were inferior to those computed for the other pairs of contiguous trials: for percent body fat (%BF), the standard error of measurement (SEM) was 1.04% for pair (1,2), 0.71% for pair (2,3), and 0.66% for pair (3,4); the two-way random effects model intraclass correlation coefficient (ICC) was 0.991 for pair (1,2), and 0.996 for pairs (2,3) and (3,4). Our findings suggest that, at least for novice subjects, the first ADP test should be regarded as a practice trial. When the remaining trials were pooled together, the reliability indices of single ADP tests were the following: ICC = 0.996, SEM = 0.70%, and minimum detectable change (MDC) = 1.93% for %BF, and ICC = 0.999, SEM = 0.49 kg, and MDC = 1.35 kg for fat-free mass (FFM). Thus, the present study pleads for eliminating learning effects to further increase the reliability of ADP.

2.
Eur J Clin Nutr ; 75(3): 438-445, 2021 03.
Article in English | MEDLINE | ID: mdl-32917960

ABSTRACT

BACKGROUND/OBJECTIVES: Several studies have addressed the validity of ultrasound (US) for body composition assessment, but few have evaluated its reliability. This study aimed to determine the reliability of percent body fat (%BF) estimates using A-mode US in a heterogeneous sample. SUBJECTS/METHODS: A group of 144 healthy adults (81 men and 63 women), 30.4 (10.1) years (mean (SD)), BMI 24.6 (4.7) kg/m2, completed 6 consecutive measurements of the subcutaneous fat layer thickness at 8 anatomical sites. The measurements were done, alternatively, by two testers, using a BodyMetrix™ instrument. To compute %BF, 4 formulas from the BodyView™ software were applied: 7-sites Jackson and Pollock, 3-sites Jackson and Pollock, 3-sites Pollock, and 1-point biceps. RESULTS: The formula with the most anatomic sites provided the best reliability quantified by the following measures: intraclass correlation coefficient (ICC) = 0.979 for Tester 1 (T1) and 0.985 for T2, technical error of measurement (TEM) = 1.07% BF for T1 and 0.89% BF for T2, and minimal detectable change (MDC) = 2.95% BF for T1, and 2.47% BF for T2. The intertester bias was -0.5% BF, whereas the intertester ICC was 0.972. The intertester MDC was 3.43% BF for the entire sample, 3.24% BF for men, and 3.65% BF for women. CONCLUSIONS: A-mode US is highly reliable for %BF assessments, but it is more precise for men than for women. Examiner performance is a source of variability that needs to be mitigated to further improve the precision of this technique.


Subject(s)
Body Composition , Subcutaneous Fat , Adipose Tissue/diagnostic imaging , Adult , Female , Humans , Male , Reproducibility of Results , Subcutaneous Fat/diagnostic imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL