Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
Infect Genet Evol ; 123: 105626, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908736

ABSTRACT

The COVID-19 outbreak has highlighted the importance of pandemic preparedness for the prevention of future health crises. One virus family with high pandemic potential are Arenaviruses, which have been detected almost worldwide, particularly in Africa and the Americas. These viruses are highly understudied and many questions regarding their structure, replication and tropism remain unanswered, making the design of an efficacious and molecularly-defined vaccine challenging. We propose that structure-driven computational vaccine design will contribute to overcome these challenges. Computational methods for stabilization of viral glycoproteins or epitope focusing have made progress during the last decades and particularly during the COVID-19 pandemic, and have proven useful for rational vaccine design and the establishment of novel diagnostic tools. In this review, we summarize gaps in our understanding of Arenavirus molecular biology, highlight challenges in vaccine design and discuss how structure-driven and computationally informed strategies will aid in overcoming these obstacles.


Subject(s)
Arenavirus , Viral Vaccines , Humans , Arenavirus/immunology , Arenavirus/genetics , Viral Vaccines/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Vaccine Development , Animals , Epitopes/immunology , Epitopes/chemistry , Arenaviridae Infections/prevention & control , Arenaviridae Infections/immunology , Arenaviridae Infections/virology
3.
Sci Transl Med ; 16(748): eadn0223, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38753806

ABSTRACT

A protective HIV vaccine will likely need to induce broadly neutralizing antibodies (bnAbs). Vaccination with the germline-targeting immunogen eOD-GT8 60mer adjuvanted with AS01B was found to induce VRC01-class bnAb precursors in 97% of vaccine recipients in the IAVI G001 phase 1 clinical trial; however, heterologous boost immunizations with antigens more similar to the native glycoprotein will be required to induce bnAbs. Therefore, we designed core-g28v2 60mer, a nanoparticle immunogen to be used as a first boost after eOD-GT8 60mer priming. We found, using a humanized mouse model approximating human conditions of VRC01-class precursor B cell diversity, affinity, and frequency, that both protein- and mRNA-based heterologous prime-boost regimens induced VRC01-class antibodies that gained key mutations and bound to near-native HIV envelope trimers lacking the N276 glycan. We further showed that VRC01-class antibodies induced by mRNA-based regimens could neutralize pseudoviruses lacking the N276 glycan. These results demonstrated that heterologous boosting can drive maturation toward VRC01-class bnAb development and supported the initiation of the IAVI G002 phase 1 trial testing mRNA-encoded nanoparticle prime-boost regimens.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , Animals , Humans , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Mice , Vaccination , Immunization, Secondary , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Broadly Neutralizing Antibodies/immunology
4.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816615

ABSTRACT

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV Infections , HIV-1 , Macaca mulatta , Animals , Humans , HIV Envelope Protein gp41/immunology , HIV Antibodies/immunology , Mice , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Vaccination , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , Nanoparticles/chemistry , Female , Complementarity Determining Regions/immunology , Epitopes/immunology
5.
Nat Immunol ; 25(6): 1083-1096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816616

ABSTRACT

Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.


Subject(s)
Antibody Affinity , B-Lymphocytes , Germinal Center , HIV Antibodies , HIV-1 , Germinal Center/immunology , Animals , Mice , Humans , B-Lymphocytes/immunology , HIV-1/immunology , HIV Antibodies/immunology , Antibody Affinity/immunology , Antibodies, Neutralizing/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Gene Knock-In Techniques , Mice, Transgenic , Broadly Neutralizing Antibodies/immunology , Mice, Inbred C57BL
6.
Science ; 384(6697): eadj8321, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753769

ABSTRACT

Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Complementarity Determining Regions , Germinal Center , HIV Antibodies , Animals , Humans , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Complementarity Determining Regions/immunology , Cryoelectron Microscopy , env Gene Products, Human Immunodeficiency Virus/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/genetics , Macaca mulatta , Memory B Cells/immunology
7.
PLoS Comput Biol ; 20(3): e1011939, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484014

ABSTRACT

Post-translational modifications (PTMs) of proteins play a vital role in their function and stability. These modifications influence protein folding, signaling, protein-protein interactions, enzyme activity, binding affinity, aggregation, degradation, and much more. To date, over 400 types of PTMs have been described, representing chemical diversity well beyond the genetically encoded amino acids. Such modifications pose a challenge to the successful design of proteins, but also represent a major opportunity to diversify the protein engineering toolbox. To this end, we first trained artificial neural networks (ANNs) to predict eighteen of the most abundant PTMs, including protein glycosylation, phosphorylation, methylation, and deamidation. In a second step, these models were implemented inside the computational protein modeling suite Rosetta, which allows flexible combination with existing protocols to model the modified sites and understand their impact on protein stability as well as function. Lastly, we developed a new design protocol that either maximizes or minimizes the predicted probability of a particular site being modified. We find that this combination of ANN prediction and structure-based design can enable the modification of existing, as well as the introduction of novel, PTMs. The potential applications of our work include, but are not limited to, glycan masking of epitopes, strengthening protein-protein interactions through phosphorylation, as well as protecting proteins from deamidation liabilities. These applications are especially important for the design of new protein therapeutics where PTMs can drastically change the therapeutic properties of a protein. Our work adds novel tools to Rosetta's protein engineering toolbox that allow for the rational design of PTMs.


Subject(s)
Protein Processing, Post-Translational , Proteins , Proteins/chemistry , Phosphorylation , Glycosylation , Machine Learning
9.
NPJ Vaccines ; 8(1): 101, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443366

ABSTRACT

Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4-0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design.

10.
Methods Enzymol ; 682: 137-185, 2023.
Article in English | MEDLINE | ID: mdl-36948700

ABSTRACT

Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.


Subject(s)
Glycoproteins , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Glycoproteins/metabolism , Glycosylation , Polysaccharides/metabolism , Mass Spectrometry
11.
Science ; 378(6623): eadd6502, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36454825

ABSTRACT

Broadly neutralizing antibodies (bnAbs) can protect against HIV infection but have not been induced by human vaccination. A key barrier to bnAb induction is vaccine priming of rare bnAb-precursor B cells. In a randomized, double-blind, placebo-controlled phase 1 clinical trial, the HIV vaccine-priming candidate eOD-GT8 60mer adjuvanted with AS01B had a favorable safety profile and induced VRC01-class bnAb precursors in 97% of vaccine recipients with median frequencies reaching 0.1% among immunoglobulin G B cells in blood. bnAb precursors shared properties with bnAbs and gained somatic hypermutation and affinity with the boost. The results establish clinical proof of concept for germline-targeting vaccine priming, support development of boosting regimens to induce bnAbs, and encourage application of the germline-targeting strategy to other targets in HIV and other pathogens.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Germ Cells , HIV Antibodies , HIV Infections , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Humans , Adjuvants, Immunologic , AIDS Vaccines/immunology , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/immunology , HIV Infections/prevention & control , Vaccination , HIV Antibodies/genetics , HIV Antibodies/immunology , Germ Cells/immunology , B-Lymphocytes/immunology , Mutation , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Male , Female , Adult
12.
Immunity ; 55(11): 2149-2167.e9, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36179689

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Humans , Broadly Neutralizing Antibodies , HIV Antibodies , env Gene Products, Human Immunodeficiency Virus , Antibodies, Neutralizing , Complementarity Determining Regions/genetics , HIV Infections/prevention & control
13.
Anal Chem ; 93(40): 13651-13657, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34597027

ABSTRACT

Viruses can evade the host immune system by displaying numerous glycans on their surface "spike-proteins" that cover immune epitopes. We have developed an ultrasensitive "single-pot" method to assess glycan occupancy and the extent of glycan processing from high-mannose to complex forms at each N-glycosylation site. Though aimed at characterizing glycosylation of viral spike-proteins as potential vaccines, this method is applicable for the analysis of site-specific glycosylation of any glycoprotein.


Subject(s)
Epitopes/chemistry , Glycoproteins/chemistry , Mannose , Polysaccharides , Viral Fusion Proteins/chemistry , Glycosylation
14.
Biomaterials ; 275: 120868, 2021 08.
Article in English | MEDLINE | ID: mdl-34091299

ABSTRACT

Antigen accumulation in lymph nodes (LNs) is critical for vaccine efficacy, but understanding of vaccine biodistribution in humans or large animals remains limited. Using the rhesus macaque model, we employed a combination of positron emission tomography (PET) and fluorescence imaging to characterize the whole-animal to tissue-level biodistribution of a subunit vaccine comprised of an HIV envelope trimer protein nanoparticle (trimer-NP) and lipid-conjugated CpG adjuvant (amph-CpG). Following immunization in the thigh, PET imaging revealed vaccine uptake primarily in inguinal and iliac LNs, reaching distances up to 17 cm away from the injection site. Within LNs, trimer-NPs exhibited striking accumulation on the periphery of follicular dendritic cell (FDC) networks in B cell follicles. Comparative imaging of soluble Env trimers (not presented on nanoparticles) in naïve or previously-immunized animals revealed diffuse deposition of trimer antigens in LNs following primary immunization, but concentration on FDCs in pre-immunized animals with high levels of trimer-specific IgG. These data demonstrate the capacity of nanoparticle or "albumin hitchhiking" technologies to concentrate vaccines in genitourinary tract-draining LNs, which may be valuable for promoting mucosal immunity.


Subject(s)
AIDS Vaccines , Vaccines , Adjuvants, Immunologic , Animals , Macaca mulatta , Positron-Emission Tomography , Tissue Distribution
16.
Nat Commun ; 11(1): 5850, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203876

ABSTRACT

HIV broadly neutralizing antibodies (bnAbs) can suppress viremia and protect against HIV infection. However, their elicitation is made difficult by low frequencies of appropriate precursor B cell receptors and the complex maturation pathways required to generate bnAbs from these precursors. Antibody genes can be engineered into B cells for expression as both a functional antigen receptor on cell surfaces and as secreted antibody. Here, we show that HIV bnAb-engineered primary mouse B cells can be adoptively transferred and vaccinated in immunocompetent mice resulting in the expansion of durable bnAb memory and long-lived plasma cells. Somatic hypermutation after immunization indicates that engineered cells have the capacity to respond to an evolving pathogen. These results encourage further exploration of engineered B cell vaccines as a strategy for durable elicitation of HIV bnAbs to protect against infection and as a contributor to a functional HIV cure.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , B-Lymphocytes/physiology , B-Lymphocytes/transplantation , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/genetics , Female , Genetic Engineering/methods , HEK293 Cells , HIV Antibodies/blood , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Infections , Humans , Immunization , Immunologic Memory/genetics , Lymphocyte Activation , Mice, Inbred C57BL , Somatic Hypermutation, Immunoglobulin
17.
Proc Natl Acad Sci U S A ; 117(37): 22920-22931, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32873644

ABSTRACT

Animal models of human antigen-specific B cell receptors (BCRs) generally depend on "inferred germline" sequences, and thus their relationship to authentic naive human B cell BCR sequences and affinities is unclear. Here, BCR sequences from authentic naive human VRC01-class B cells from healthy human donors were selected for the generation of three BCR knockin mice. The BCRs span the physiological range of affinities found in humans, and use three different light chains (VK3-20, VK1-5, and VK1-33) found among subclasses of naive human VRC01-class B cells and HIV broadly neutralizing antibodies (bnAbs). The germline-targeting HIV immunogen eOD-GT8 60mer is currently in clinical trial as a candidate bnAb vaccine priming immunogen. To attempt to model human immune responses to the eOD-GT8 60mer, we tested each authentic naive human VRC01-class BCR mouse model under rare human physiological B cell precursor frequency conditions. B cells with high (HuGL18HL) or medium (HuGL17HL) affinity BCRs were primed, recruited to germinal centers, and they affinity matured, and formed memory B cells. Precursor frequency and affinity interdependently influenced responses. Taken together, these experiments utilizing authentic naive human VRC01-class BCRs validate a central tenet of germline-targeting vaccine design and extend the overall concept of the reverse vaccinology approach to vaccine development.


Subject(s)
Antibodies, Monoclonal/immunology , Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , Receptors, Antigen, B-Cell/immunology , AIDS Vaccines/immunology , Amino Acid Sequence/genetics , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/pharmacology , CD4 Antigens/immunology , Gene Knock-In Techniques/methods , Germinal Center/immunology , HIV Antigens , HIV Infections/immunology , HIV-1/immunology , Humans , Mice , Mice, Inbred Strains , Mice, Transgenic , Precursor Cells, B-Lymphoid/immunology , Vaccination/methods
18.
NPJ Vaccines ; 5(1): 72, 2020.
Article in English | MEDLINE | ID: mdl-32802411

ABSTRACT

Following immunization, high-affinity antibody responses develop within germinal centers (GCs), specialized sites within follicles of the lymph node (LN) where B cells proliferate and undergo somatic hypermutation. Antigen availability within GCs is important, as B cells must acquire and present antigen to follicular helper T cells to drive this process. However, recombinant protein immunogens such as soluble human immunodeficiency virus (HIV) envelope (Env) trimers do not efficiently accumulate in follicles following traditional immunization. Here, we demonstrate two strategies to concentrate HIV Env immunogens in follicles, via the formation of immune complexes (ICs) or by employing self-assembling protein nanoparticles for multivalent display of Env antigens. Using rhesus macaques, we show that within a few days following immunization, free trimers were present in a diffuse pattern in draining LNs, while trimer ICs and Env nanoparticles accumulated in B cell follicles. Whole LN imaging strikingly revealed that ICs and trimer nanoparticles concentrated in as many as 500 follicles in a single LN within two days after immunization. Imaging of LNs collected seven days postimmunization showed that Env nanoparticles persisted on follicular dendritic cells in the light zone of nascent GCs. These findings suggest that the form of antigen administered in vaccination can dramatically impact localization in lymphoid tissues and provides a new rationale for the enhanced immune responses observed following immunization with ICs or nanoparticles.

19.
Cell Rep ; 31(4): 107583, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32348769

ABSTRACT

Structural and functional studies of HIV envelope glycoprotein (Env) as a transmembrane protein have long been complicated by challenges associated with inherent flexibility of the molecule and the membrane-embedded hydrophobic regions. Here, we present approaches for incorporating full-length, wild-type HIV-1 Env, as well as C-terminally truncated and stabilized versions, into lipid assemblies, providing a modular platform for Env structural studies by single particle electron microscopy. We reconstitute a full-length Env clone into a nanodisc, complex it with a membrane-proximal external region (MPER) targeting antibody 10E8, and structurally define the full quaternary epitope of 10E8 consisting of lipid, MPER, and ectodomain contacts. By aligning this and other Env-MPER antibody complex reconstructions with the lipid bilayer, we observe evidence of Env tilting as part of the neutralization mechanism for MPER-targeting antibodies. We also adapt the platform toward vaccine design purposes by introducing stabilizing mutations that allow purification of unliganded Env with a peptidisc scaffold.


Subject(s)
HIV Envelope Protein gp41/genetics , HIV-1/genetics , Lipid Bilayers/metabolism , Humans
20.
Immunity ; 51(1): 141-154.e6, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31315032

ABSTRACT

The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ∼24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , HIV Infections/immunology , HIV-1/physiology , AIDS Vaccines/genetics , Amino Acid Sequence , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibody Affinity , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , CD4 Antigens/metabolism , Complementarity Determining Regions/genetics , HIV Antibodies/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , Humans , Polysaccharides/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL