Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 205(2): 511-520, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32532835

ABSTRACT

During inflammation, endothelial cells are bombarded with cytokines and other stimuli from surrounding cells. Leukocyte extravasation and vascular leakage are both prominent but believed to be uncoupled as they occur in separate spatiotemporal patterns. In this study, we investigated a "double-hit" approach on primary human endothelial cells primed with LPS followed by histamine. Using neutrophil transendothelial migration (TEM) under physiological flow assays, we found that an LPS-primed endothelium synergistically enhanced neutrophil TEM when additionally treated with histamine, whereas the effects on neutrophil TEM of the individual stimuli were moderate to undetectable. Interestingly, the double-hit-induced TEM increase was not due to decreased endothelial barrier, increased adhesion molecule expression, or Weibel-Palade body release. Instead, we found that it was directly correlated with junctional remodeling. Compounds that increased junctional "linearity" (i.e., stability) counteracted the double-hit effect on neutrophil TEM. We conclude that a compound, in this case histamine (which has a short primary effect on vascular permeability), can have severe secondary effects on neutrophil TEM in combination with an inflammatory stimulus. This effect is due to synergic modifications of the endothelial cytoskeleton and junctional remodeling. Therefore, we hypothesize that junctional linearity is a better and more predictive readout than endothelial resistance for compounds aiming to attenuate inflammation.


Subject(s)
Adherens Junctions/metabolism , Endothelium, Vascular/physiology , Histamine/metabolism , Inflammation/pathology , Leukocytes/physiology , Lipopolysaccharides/metabolism , Neutrophils/physiology , Capillary Permeability , Cell Adhesion , Cell Adhesion Molecules/metabolism , Cell Movement , Cells, Cultured , Cytokines/metabolism , Cytoskeleton/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Transendothelial and Transepithelial Migration
2.
Res Pract Thromb Haemost ; 3(4): 718-732, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31624792

ABSTRACT

BACKGROUND: Synthesis of the hemostatic protein von Willebrand factor (VWF) drives formation of endothelial storage organelles called Weibel-Palade bodies (WPBs). In the absence of VWF, angiogenic and inflammatory mediators that are costored in WPBs are subject to alternative trafficking routes. In patients with von Willebrand disease (VWD), partial or complete absence of VWF/WPBs may lead to additional bleeding complications, such as angiodysplasia. Studies addressing the role of VWF using VWD patient-derived blood outgrowth endothelial cells (BOECs) have reported conflicting results due to the intrinsic heterogeneity of patient-derived BOECs. OBJECTIVE: To generate a VWF-deficient endothelial cell model using clustered regularly interspaced short palindromic repeats (CRISPR) genome engineering of blood outgrowth endothelial cells. METHODS: We used CRISPR/CRISPR-associated protein 9 editing in single-donor cord blood-derived BOECs (cbBOECs) to generate clonal VWF -/- cbBOECs. Clones were selected using high-throughput screening, VWF mutations were validated by sequencing, and cells were phenotypically characterized. RESULTS: Two VWF -/- BOEC clones were obtained and were entirely devoid of WPBs, while their overall cell morphology was unaltered. Several WPB proteins, including CD63, syntaxin-3 and the cargo proteins angiopoietin (Ang)-2, interleukin (IL)-6, and IL-8 showed alternative trafficking and secretion in the absence of VWF. Interestingly, Ang-2 was relocated to the cell periphery and colocalized with Tie-2. CONCLUSIONS: CRISPR editing of VWF provides a robust method to create VWF- deficient BOECs that can be directly compared to their wild-type counterparts. Results obtained with our model system confirmed alternative trafficking of several WPB proteins in the absence of VWF and support the theory that increased Ang-2/Tie-2 interaction contributes to angiogenic abnormalities in VWD patients.

3.
J Proteomics ; 205: 103417, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31201948

ABSTRACT

The endothelium stores the hemostatic protein Von Willebrand factor (VWF) in endothelial storage organelles called Weibel-Palade bodies (WPBs). During maturation, WPBs recruit a complex of Rab GTPases and effectors that associate with components of the SNARE machinery that control WPB exocytosis. Recent genome wide association studies have found links between genetic variations in the SNAREs syntaxin-2 (STX2) and syntaxin binding protein 5 (STXBP5) and VWF plasma levels, suggesting a role for SNARE proteins in regulating VWF release. Moreover, we have previously identified the SNARE proteins syntaxin-3 and STXBP1 as regulators of WPB release. In this study we used an unbiased iterative interactomic approach to identify new components of the WPB exocytotic machinery. An interactome screen of syntaxin-3 identifies a number of SNAREs and SNARE associated proteins (STXBP2, STXBP5, SNAP23, NAPA and NSF). We show that the VAMP-like domain (VLD) of STXBP5 is indispensable for the interaction with SNARE proteins and this capacity of the VLD could be exploited to identify an extended set of novel endothelial SNARE interactors of STXBP5. In addition, an STXBP5 variant with an N436S substitution, which is linked to lower VWF plasma levels, does not show a difference in interactome when compared with WT STXBP5. SIGNIFICANCE: The hemostatic protein Von Willebrand factor plays a pivotal role in vascular health: quantitative or qualitative deficiencies of VWF can lead to bleeding, while elevated levels of VWF are associated with increased risk of thrombosis. Tight regulation of VWF secretion from WPBs is therefore essential to maintain vascular homeostasis. We used an unbiased proteomic screen to identify new components of the regulatory machinery that controls WPB exocytosis. Our data expand the endothelial SNARE protein network and provide a set of novel candidate WPB regulators that may contribute to regulation of VWF plasma levels and vascular health.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Nerve Tissue Proteins/metabolism , Protein Interaction Maps , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , Weibel-Palade Bodies/metabolism , Cells, Cultured , Exocytosis/physiology , HEK293 Cells , Humans , Protein Interaction Maps/physiology , Proteomics , von Willebrand Factor/metabolism
4.
Haematologica ; 104(10): 2091-2099, 2019 10.
Article in English | MEDLINE | ID: mdl-30630984

ABSTRACT

Weibel-Palade bodies are endothelial secretory organelles that contain von Willebrand factor, P-selectin and CD63. Release of von Willebrand factor from Weibel-Palade bodies is crucial for platelet adhesion during primary hemostasis. Endosomal trafficking of proteins like CD63 to Weibel-Palade bodies during maturation is dependent on the adaptor protein complex 3 complex. Mutations in the AP3B1 gene, which encodes the adaptor protein complex 3 ß1 subunit, result in Hermansky-Pudlak syndrome 2, a rare genetic disorder that leads to neutropenia and a mild bleeding diathesis. This is caused by abnormal granule formation in neutrophils and platelets due to defects in trafficking of cargo to secretory organelles. The impact of these defects on the secretory pathway of the endothelium is largely unknown. In this study, we investigated the role of adaptor protein complex 3-dependent mechanisms in trafficking of proteins during Weibel-Palade body maturation in endothelial cells. An ex vivo patient-derived endothelial model of Hermansky-Pudlak syndrome type 2 was established using blood outgrowth endothelial cells that were isolated from a patient with compound heterozygous mutations in AP3B1 Hermansky-Pudlak syndrome type 2 endothelial cells and CRISPR-Cas9-engineered AP3B1-/- endothelial cells contain Weibel-Palade bodies that are entirely devoid of CD63, indicative of disrupted endosomal trafficking. Hermansky-Pudlak syndrome type 2 endothelial cells have impaired Ca2+-mediated and cAMP-mediated exocytosis. Whole proteome analysis revealed that, apart from adaptor protein complex 3 ß1, also the µ1 subunit and the v-SNARE VAMP8 were depleted. Stimulus-induced von Willebrand factor secretion was impaired in CRISPR-Cas9-engineered VAMP8-/-endothelial cells. Our data show that defects in adaptor protein complex 3-dependent maturation of Weibel-Palade bodies impairs exocytosis by affecting the recruitment of VAMP8.


Subject(s)
Adaptor Protein Complex 3 , Adaptor Protein Complex beta Subunits , Endothelial Cells , Exocytosis , Hermanski-Pudlak Syndrome , R-SNARE Proteins/metabolism , Weibel-Palade Bodies , Adaptor Protein Complex 3/genetics , Adaptor Protein Complex 3/metabolism , Adaptor Protein Complex beta Subunits/genetics , Adaptor Protein Complex beta Subunits/metabolism , Calcium Signaling , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/pathology , Hermanski-Pudlak Syndrome/genetics , Hermanski-Pudlak Syndrome/metabolism , Hermanski-Pudlak Syndrome/pathology , Humans , Mutation , Protein Transport , R-SNARE Proteins/genetics , Weibel-Palade Bodies/genetics , Weibel-Palade Bodies/metabolism , Weibel-Palade Bodies/pathology
5.
Arterioscler Thromb Vasc Biol ; 38(7): 1549-1561, 2018 07.
Article in English | MEDLINE | ID: mdl-29880488

ABSTRACT

OBJECTIVE: Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. APPROACH AND RESULTS: In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3-/-), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3-/- BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3-/- BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3-/- BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). CONCLUSIONS: Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.


Subject(s)
Endothelial Cells/metabolism , Exocytosis , Malabsorption Syndromes/metabolism , Microvilli/pathology , Mucolipidoses/metabolism , Qa-SNARE Proteins/metabolism , Weibel-Palade Bodies/metabolism , von Willebrand Factor/metabolism , Calcium/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Endothelial Cells/ultrastructure , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Malabsorption Syndromes/diagnosis , Malabsorption Syndromes/genetics , Microvilli/genetics , Microvilli/metabolism , Mucolipidoses/diagnosis , Mucolipidoses/genetics , Mutation , Qa-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , Secretory Pathway , Signal Transduction , Weibel-Palade Bodies/ultrastructure
6.
PLoS One ; 13(2): e0191622, 2018.
Article in English | MEDLINE | ID: mdl-29415042

ABSTRACT

Monomeric autotransporters have been extensively used for export of recombinant proteins to the cell surface of Gram-negative bacteria. A bottleneck in the biosynthesis of such constructs is the passage of the outer membrane, which is facilitated by the ß-domain at the C terminus of an autotransporter in conjunction with the Bam complex in the outer membrane. We have evaluated eight ß-domain constructs for their capacity to secrete fused proteins to the cell surface. These constructs derive from the monomeric autotransporters Hbp, IgA protease, Ag43 and EstA and the trimeric autotransporter Hia, which all were selected because they have been previously used for secretion of recombinant proteins. We fused three different protein domains to the eight ß-domain constructs, being a Myc-tag, the Hbp passenger and a nanobody or VHH domain, and assessed expression, membrane insertion and surface exposure. Our results show that expression levels differed considerably between the constructs tested. The constructs that included the ß-domains of Hbp and IgA protease appeared the most efficient and resulted in expression levels that were detectable on Coomassie-stained SDS-PAGE gels. The VHH domain appeared the most difficult fusion partner to export, probably due to its complex immunoglobulin-like structure with a tertiary structure stabilized by an intramolecular disulfide bond. Overall, the Hbp ß-domain compared favorably in exporting the fused recombinant proteins, because it showed in every instance tested a good level of expression, stable membrane insertion and clear surface exposure.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Transport Proteins/metabolism , Cell Membrane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...