Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 6895, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134528

ABSTRACT

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating SLC17A1/3-dependent de-coupling of urine and plasma Lac-Phe pools. Together, these data establish SLC17A1/3 family members as the physiologic urine Lac-Phe transporters and uncover a biochemical pathway for the renal excretion of this signaling metabolite.


Subject(s)
Kidney , Mice, Knockout , Animals , Humans , Mice , Male , Kidney/metabolism , Renal Elimination , Female , Lactates/metabolism , Lactates/blood , Lactates/urine , Phenylalanine/metabolism , Phenylalanine/urine , Phenylalanine/blood , Mice, Inbred C57BL , Adult , HEK293 Cells
2.
medRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39040172

ABSTRACT

The number of assays on highly-multiplexed proteomic platforms has grown tenfold over the past 15 years from less than 1,000 to >11,000. The leading aptamer-based and antibody-based platforms have different strengths. For example, Eldjarn et al1 demonstrated that the aptamer-based SomaScan 5k (4,907 assays, assessed in the Icelandic 36K) and the antibody-based Olink Explore 3072 (2,931 assays, assessed in the UK BioBank) had a similar number of cis-pQTLs among all targets (2,120 vs. 2,101) but Olink had a greater number of cis-pQTLs among the overlapping targets (1,164 vs. 1,467). Analysis of split plasma measures showed the SomaScan assays to be more precise: median coefficient of variation (CV) of 9.9% vs. 16.5% for Olink.1 Precision of the newest versions of the platforms-SomaScan 11k (>11,000 assays, released in December 2023) and Olink Explore HT (>5,400 assays, released in July 2023)-has not yet been established. We assessed the reproducibility of the SomaScan 11k and Olink Explore HT using split plasma samples from 102 Atherosclerosis Risk in Communities (ARIC) Study participants. We found that the SomaScan 11k assays had a median CV of 6.8% (vs 6.6% for the subset of assays available on the SomaScan 5k) and the Olink Explore HT assays had a median CV of 35.7% (vs 19.8% for the subset of assays available on the Olink Explore 3072). Across Olink assays, the CVs were strongly negatively correlated with protein detectability, i.e., percent of samples above the limit of detection (LOD). For the 4,443 overlapping assays, the distribution of between-platform correlations was bimodal with a peak at r~0 and with another smaller peak at r~0.8. These findings on precision are consistent with the updated results by Eldjarn et al1 but indicate that precision of these two leading platforms in human plasma has diverged as the number of included proteins has increased.

3.
Kidney Int ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39084256

ABSTRACT

Choline has important physiological functions as a precursor for essential cell components, signaling molecules, phospholipids, and the neurotransmitter acetylcholine. Choline is a water-soluble charged molecule requiring transport proteins to cross biological membranes. Although transporters continue to be identified, membrane transport of choline is incompletely understood and knowledge about choline transport into intracellular organelles such as mitochondria remains limited. Here we show that SLC25A48 imports choline into human mitochondria. Human loss-of-function mutations in SLC25A48 show impaired choline transport into mitochondria and are associated with elevated urine and plasma choline levels. Thus, our studies may have implications for understanding and treating conditions related to choline metabolism.

5.
Am J Kidney Dis ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815646

ABSTRACT

RATIONALE & OBJECTIVE: Biomarkers that enable better identification of persons with chronic kidney disease (CKD) who are at higher risk for disease progression and adverse events are needed. This study sought to identify urine and plasma metabolites associated with progression of kidney disease. STUDY DESIGN: Prospective metabolome-wide association study. SETTING & PARTICIPANTS: Persons with CKD enrolled in the GCKD (German CKD) study with metabolite measurements, with external validation within the ARIC (Atherosclerosis Risk in Communities) Study. EXPOSURES: 1,513 urine and 1,416 plasma metabolites (Metabolon Inc) measured at study entry using untargeted mass spectrometry. OUTCOMES: Main end points were kidney failure (KF) and a composite kidney end point (CKE) of KF, estimated glomerular filtration rate<15mL/min/1.73m2, or a 40% decrease in estimated glomerular filtration rate. Death from any cause was a secondary end point. After a median of 6.5 years of follow-up, 500 persons had experienced KF, 1,083 had experienced the CKE, and 680 had died. ANALYTICAL APPROACH: Time-to-event analyses using multivariable proportional hazard regression models in a discovery-replication design with external validation. RESULTS: 5,088 GCKD study participants were included in analyses of urine metabolites, and 5,144 were included in analyses of plasma metabolites. Among 182 unique metabolites, 30 were significantly associated with KF, 49 with the CKE, and 163 with death. The strongest association with KF was observed for plasma hydroxyasparagine (HR, 1.95; 95% CI, 1.68-2.25). An unnamed metabolite measured in plasma and urine was significantly associated with KF, the CKE, and death. External validation of the identified associations of metabolites with KF or the CKE revealed directional consistency for 88% of observed associations. Selected associations of 18 metabolites with study outcomes have not been previously reported. LIMITATIONS: Use of observational data and semiquantitative metabolite measurements at a single time point. CONCLUSIONS: The observed associations between metabolites and KF, the CKE, or death in persons with CKD confirmed previously reported findings and also revealed several associations not previously described. These findings warrant confirmatory research in other study cohorts. PLAIN-LANGUAGE SUMMARY: Incomplete understanding of the variability of chronic kidney disease (CKD) progression motivated the search for new biomarkers that would help identify people at increased risk. We explored metabolites in plasma and urine for their association with unfavorable kidney outcomes or death in persons with CKD. Metabolomic analyses revealed 182 metabolites significantly associated with CKD progression or death. Many of these associations confirmed previously reported findings or were validated by analysis in an external study population. Our comprehensive screen of the metabolome serves as a valuable foundation for future investigations into biomarkers associated with CKD progression.

7.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38688567

ABSTRACT

SUMMARY: This article introduces the metaGWASmanager, which streamlines genome-wide association studies within large-scale meta-analysis consortia. It is a toolbox for both the central consortium analysis group and participating studies to generate homogeneous phenotypes, minimize unwanted variability from inconsistent methodologies, ensure high-quality association results, and implement time-efficient quality control workflows. The toolbox features a plug-in-based approach for customization of association testing. RESULTS: The metaGWASmanager toolbox has been successfully deployed in both the CKDGen and MetalGWAS Initiative consortia across hundreds of participating studies, demonstrating its effectiveness in GWAS analysis optimization by automating routine tasks and ensuring the value and reliability of association results, thus, ultimately promoting scientific discovery. We provide a simulated data set with examples for script customization so that readers can reproduce the pipeline at their convenience. AVAILABILITY AND IMPLEMENTATION: GitHub: https://github.com/genepi-freiburg/metaGWASmanager.


Subject(s)
Genome-Wide Association Study , Phenotype , Software , Workflow , Genome-Wide Association Study/methods , Humans , Meta-Analysis as Topic
8.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659895

ABSTRACT

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are also increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating that urine and plasma Lac-Phe pools are functionally and biochemically de-coupled. Together, these data establish SLC17 family members as the physiologic urine transporters for Lac-Phe and uncover a biochemical pathway for the renal excretion of this signaling metabolite.

9.
Ann Hematol ; 103(5): 1613-1622, 2024 May.
Article in English | MEDLINE | ID: mdl-38308707

ABSTRACT

Biomarkers in chronic lymphocytic leukemia (CLL) allow assessment of prognosis. However, the validity of current prognostic biomarkers based on a single assessment point remains unclear for patients who have survived one or more years. Conditional survival (CS) studies that address how prognosis may change over time, especially in prognostic subgroups, are still rare. We performed CS analyses to estimate 5-year survival in 1-year increments, stratified by baseline disease characteristics and known risk factors in two community-based cohorts of CLL patients (Freiburg University Hospital (n = 316) and Augsburg University Hospital (n = 564)) diagnosed between 1984 and 2021. We demonstrate that 5-year CS probability is stable (app. 75%) for the entire CLL patient cohort over 10 years. While age, sex, and stage have no significant impact on CS, patients with high-risk disease features such as non-mutated IGHV, deletion 17p, and high-risk CLL-IPI have a significantly worse prognosis at diagnosis, and 5-year CS steadily decreases with each additional year survived. Our results confirm that CLL patients have a stable survival probability with excess mortality and that the prognosis of high-risk CLL patients declines over time. We infer that CS-based prognostic information is relevant for disease management and counseling of CLL patients.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Prognosis , Biomarkers , Survival Analysis , Mutation
10.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154558

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Subject(s)
Embryonic Structures , Forkhead Transcription Factors , Kidney Diseases , Kidney , Nephrons , Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Adult , Animals , Humans , Mice , Genome-Wide Association Study , Kidney/abnormalities , Kidney/embryology , Kidney Diseases/genetics , Mice, Knockout , Nephrons/embryology , Transcription Factors/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL