Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 279
1.
Cell Rep ; 43(7): 114374, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38900641

Morphological studies of skeletal muscle tissue provide insights into the architecture of muscle fibers, the surrounding cells, and the extracellular matrix (ECM). However, a spatial proteomics analysis of the skeletal muscle including the muscle-tendon transition zone is lacking. Here, we prepare cryotome muscle sections of the mouse soleus muscle and measure each slice using short liquid chromatography-mass spectrometry (LC-MS) gradients. We generate 3,000 high-resolution protein profiles that serve as the basis for a network analysis to reveal the complex architecture of the muscle-tendon junction. Among the protein profiles that increase from muscle to tendon, we find proteins related to neuronal activity, fatty acid biosynthesis, and the renin-angiotensin system (RAS). Blocking the RAS in cultured mouse tenocytes using losartan reduces the ECM synthesis. Overall, our analysis of thin cryotome sections provides a spatial proteome of skeletal muscle and reveals that the RAS acts as an additional regulator of the matrix within muscle-tendon junctions.

2.
Angew Chem Int Ed Engl ; : e202406551, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822492

It has been recently shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to that of maser, potentially enabling new ways of sensing of hyperpolarized contrast media, including most notably [1-13C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors. Here, we demonstrate the utility of a wireless NMR maser detector, the quality factor of which was enhanced 22-fold (to 1,670) via parametric pumping. This active-feedback technique breaks the intrinsic fundamental limit of NMR detector circuit quality factor. We show the use of parametric pumping to reduce the threshold requirement for inducing nuclear spin masing at 300 MHz resonance frequency in preclinical MRI scanner. Indeed, stimulated emission from hyperpolarized protons was obtained under highly unfavorable conditions of low magnetic field homogeneity (T2* of 3 ms). Greater gains of the quality factor of MR detector (up to 1 million) were demonstrated.

3.
ChemSusChem ; : e202301900, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38624078

Flotation of the mineral lithium aluminate by application of the natural product punicine from Punica granatum and some derivatives as collectors is examined. Punicines, 1-(2',5'-dihydroxyphenyl)-pyridinium compounds, are switchable molecules whose properties can be changed reversibly. They exist as cations, neutral mesomeric betaines, anions, and dianions depending on the pH. In light, they form radicals. Five punicine derivatives were prepared which possess ß-methyl, ß-chlorine, γ-tert.-butyl, and γ-acetyl groups attached to the pyridinium ring, and a pyrogallol derivative. On the other hand, LiAlO2 reacts with water to give species such as LiAl2(OH)7 on its surface. Flotations were performed applying the punicines in daylight (3000 lux), in darkness (<40 lux) and under UV-irradiation (4500 lux, 390-400 nm). The pH of the suspension, the collector's concentration, the conditioning time as well as the flotation time were varied. The recovery rates strongly depend on these parameters. For example, the recovery rate of lithium aluminate was increased by 116 % on changing the lighting condition from daylight to darkness, when the pyrogallol derivative of punicine was applied. UV, FTIR, TGA and zeta potential measurements as well as DFT calculations were performed in order to gain insight into the chemistry of punicines on the surface of LiAlO2 and LiAl2(OH)7 in water which influence the flotation's results.

4.
J Synchrotron Radiat ; 31(Pt 3): 596-604, 2024 May 01.
Article En | MEDLINE | ID: mdl-38587894

The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser Facility (EuXFEL) is equipped with a multipurpose diagnostic end-station (DES) at the end of the instrument. The imager unit in DES is a key tool for aligning the beam to a standard trajectory and for adjusting optical elements such as focusing lenses or the split-and-delay line. Furthermore, the DES features a bent-diamond-crystal spectrometer to disperse the spectrum of the direct beam to a line detector. This enables pulse-resolved characterization of the EuXFEL spectrum to provide X-ray energy calibration, and the spectrometer is particularly useful in commissioning special modes of the accelerator. Together with diamond-based intensity monitors, the imager and spectrometer form the DES unit which also contains a heavy-duty beamstop at the end of the MID instrument. Here, we describe the setup in detail and provide exemplary beam diagnostic results.

5.
RSC Adv ; 14(13): 9353-9364, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38510489

Derivatives of the natural product punicine [1-(2',5'-dihydroxyphenyl)pyridinium chloride] were developed as switchable collectors for the flotation of lithium-containing engineered artifical minerals (EnAMs). These EnAMs are e.g. formed by pyrometallurgical processing of end-of-life lithium-ion batteries. Depending on the pH value and the lighting conditions, punicines exist in water as cations, two different electrostatically neutral mesomeric betaines, anionic tripoles, radical cations or radical anions. The radical species form by photochemically induced disproportionation reactions. We prepared punicine derivatives introducing alkyl chains in the pyridinium moiety (4-methyl, 4-ethyl, 4-octyl and 4-undecanyl) to install hydrophobic groups and examined the recovery rates of the flotation of lithium aluminate (LiAlO2). We varied the lighting conditions (darkness, daylight, LED irradiation at λ = 390-400 nm) and the pH value, the collector's and frother's concentration, and the flotation time. With our collectors, recovery rates of lithium aluminate up to 90% were accomplished when the flotation was conducted in Hallimond tubes exposed to daylight at pH 11 in water.

6.
Anal Chem ; 96(10): 4171-4179, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38358916

We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.

7.
ACS Sens ; 9(2): 770-780, 2024 02 23.
Article En | MEDLINE | ID: mdl-38198709

13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.


Carbon Isotopes , Contrast Media , Pyruvic Acid , Pyruvic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Lactic Acid
8.
Chemistry ; 30(22): e202304034, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38231534

Bi-substituted acetylenes with a quinolinium and an isoquinolinium substituent are described, which reversibly form intensely colored adducts with O-nucleophiles and thus enable the detection of >0,5 ppm hydroxide on the surfaces of various glasses. Acids reconstitute the colorless bi-substituted acetylenes. The quinolinium and isoquinolinium rings are bound via their 2-, 3-, 4- and 1-, 3-, 4-positions to the triple bond, respectively. The choice of substitution sites of the hetarenium rings enables the design of mixed conjugated/cross-conjugated π-electron systems. Depending on the combination of binding sites, the frontier orbital profile, the triple bond polarization, the fluorescence behaviour, and the sensitivity to hydroxide differs.

9.
Mol Imaging Biol ; 26(2): 222-232, 2024 Apr.
Article En | MEDLINE | ID: mdl-38147265

Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.


Magnetic Resonance Imaging , Medical Oncology , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods
10.
Pancreatology ; 23(8): 957-963, 2023 Dec.
Article En | MEDLINE | ID: mdl-37949771

BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.


Chymases , Pancreatitis, Chronic , Humans , Chymases/genetics , Genetic Predisposition to Disease , Mutation , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/metabolism , Risk Factors
11.
ACS Nanosci Au ; 3(5): 375-380, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37868228

In recent years, fluorescence microscopy has been revolutionized. Reversible switching of fluorophores has enabled circumventing the limits imposed by diffraction. Thus, resolution down to the molecular scale became possible. However, to the best of our knowledge, the application of the principles underlying super-resolution fluorescence microscopy to reflection microscopy has not been experimentally demonstrated. Here, we present the first evidence that this is indeed possible. A layer of photochromic molecules referred to as the absorbance modulation layer (AML) is applied to a sample under investigation. The AML-coated sample is then sequentially illuminated with a one-dimensional (1D) focal intensity distribution (similar to the transverse laser mode TEM01) at wavelength λ1 = 325 nm to create a subwavelength aperture within the AML, followed by illumination with a Gaussian focal spot at λ2 = 633 nm for high-resolution imaging. Using this method, called absorbance modulation imaging (AMI) in reflection, we demonstrate a 2.4-fold resolution enhancement over the diffraction limit for a numerical aperture (NA) of 0.65 and wavelength (λ) of 633 nm.

12.
Eur J Pediatr ; 182(12): 5341-5352, 2023 Dec.
Article En | MEDLINE | ID: mdl-37733117

Solid pseudopapillary neoplasms (SPNs) are the most common entity among pediatric pancreatic tumors. Still, these are rare tumors with an annual incidence of 0.1-0.2/1,000,000, and little is known about their optimal treatment. This analysis aimed to increase knowledge about the occurrence and treatment strategies of SPN in childhood. Data regarding diagnostics, treatment, and outcome of children aged 0-18 years with SPN recorded in the German Registry for Rare Pediatric Tumors (STEP) were analyzed. Thirty-eight patients were identified with a median age of 14.5 years at diagnosis (range: 8-18) and a female preponderance (81.6%). The most frequent location of the tumor was the pancreatic tail. In histopathological and immunohistochemical examination, pseudopapillary, solid, and cystic lesions as well as expression of beta-catenin, progesterone receptors, and cyclin D1 were the most common findings. All patients underwent surgical resection. Most patients underwent open resection, predominantly tail resection for tumors in the tail region and pylorus-preserving pancreaticoduodenectomy for tumors in the head region. The main postoperative sequela was exogenous pancreatic insufficiency (23.7%), especially with SPN in the pancreatic head. No recurrence occurred during follow-up, although two patients underwent resection with microscopic residue. CONCLUSION: SPN of the pancreas in childhood are low-grade malignancies with usually favorable treatment outcomes. However, therapy can lead to relevant long-term sequelae. To prevent recurrence, complete surgical resection is recommended, sparing as much healthy pancreatic tissue as possible. Interdisciplinary collaboration between specialists is essential to optimize treatment. Molecular genetic analysis of these tumors could improve understanding of their genesis. WHAT IS KNOWN: • Solid pseudopapillary neoplasms (SPNs) of the pancreas are very rare tumors in childhood. • Little is known about tumorigenesis, and there are no specific guidelines for treatment and follow-up in pediatric patients. WHAT IS NEW: • Characteristics, treatment, and outcome were comprehensively assessed in a large cohort of pediatric patients with SPN. • We propose recommendations for diagnosis, treatment, and follow-up of children with SPN, based on our analysis and considering published experience.


Neoplasms, Glandular and Epithelial , Pancreatic Neoplasms , Humans , Female , Adolescent , Child , Pancreatectomy , Pancreas/surgery , Pancreas/pathology , Pancreaticoduodenectomy , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/surgery , Registries
13.
Cells ; 12(18)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37759470

Cellular biomolecular condensates, termed ribonucleoprotein (RNP) granules, are often enriched in messenger RNA (mRNA) molecules relative to the surrounding cytoplasm. Yet, the spatial localization and diffusion of mRNAs in close proximity to phase separated RNP granules are not well understood. In this study, we performed single-molecule fluorescence imaging experiments of mRNAs in live cells in the presence of two types of RNP granules, stress granules (SGs) and processing bodies (PBs), which are distinct in their molecular composition and function. We developed a photobleaching- and noise-corrected colocalization imaging algorithm that was employed to determine the accurate positions of individual mRNAs relative to the granule's boundaries. We found that mRNAs are often localized at granule boundaries, an observation consistent with recently published data. We suggest that mRNA molecules become spontaneously confined at the RNP granule boundary similar to the adsorption of polymer molecules at liquid-liquid interfaces, which is observed in various technological and biological processes. We also suggest that this confinement could be due to a combination of intermolecular interactions associated with, first, the screening of a portion of the RNP granule interface by the polymer and, second, electrostatic interactions due to a strong electric field induced by a Donnan potential generated across the thin interface.

15.
RSC Adv ; 13(37): 25704-25716, 2023 Aug 29.
Article En | MEDLINE | ID: mdl-37649660

A series of bis(thienyl)ethenes (BTEs) possessing perfluorocyclopentene backbones and methoxymethyl groups (MOM) in the 2/2'-positions of the thiophenes was prepared and examined. The substitution pattern of the 5/5'-positions was varied, covering the range from electron-donating to electron-withdrawing. The substituent effects of the absorption wavelengths of the ring-opened and the ring-closed isomers, which are interconverted by reversible 6π-electrocyclizations and cycloreversions, are studied by means of the spectroscopic Hammett equation and the Hammett-Brown equation. Excellent correlations of these linear free energy relationships were found, when the σp values of the Hammett equation, which summarize inductive, mesomeric and field effects, were replaced to the Hammett-Brown σp+ and σp- values which also take direct conjugation into account. We studied solvent effects on the spectroscopic properties and embedded the BTEs into polymethylmethacrylate (PMMA) coatings to examine their fatigue resistance. By our studies, the spectroscopic properties of BTEs can be adjusted by variation of the substitution pattern to a desired excitation wavelength for switching processes.

16.
J Cancer Res Clin Oncol ; 149(14): 12913-12921, 2023 Nov.
Article En | MEDLINE | ID: mdl-37466795

PURPOSE: Treatment of neuroblastoma metastases usually consists of chemotherapy and irradiation. However, in selected cases, surgical treatment is also indicated. In this study, we present three cases of patients with neuroblastoma metastases at rare sites that underwent surgery. MATERIALS AND METHODS: We retrospectively analyzed data of patients who underwent surgery for neuroblastoma at our department of Pediatric Surgery and Pediatric Urology at the University Children's Hospital in Tuebingen and selected those patients who had surgery explicitly for a metastasis. RESULTS: Between 2002 and 2020, 277 children underwent surgical treatment for neuroblastoma. Three cases with metastases at exceptional sites are presented here after therapy according to protocols. One patient had a penile metastasis and received surgery including a plastic reconstruction. The patient showed no signs of erectile or urinary dysfunction at follow-up. Another patient had a metastasis in the proximal ulna, which remained vital even after exhausted treatment after two relapses. Afterward there was no restriction of movement of the extremity. The third patient had, amongst others, metastases to the pancreatic body and to the liver. Both were surgically removed during primary tumor resection. This patient died after local tumor relapse. The other two patients showed no evidence of tumor relapse after a follow-up of 18 and 17 months, respectively. CONCLUSION: Although children with neuroblastoma often present with metastases, there is no recommendation for surgical treatment other than diagnostic biopsies. In case of persistence of metastasis or after exhaustion of high-risk therapy, surgical resection must be considered.

17.
Angew Chem Int Ed Engl ; 62(36): e202306654, 2023 09 04.
Article En | MEDLINE | ID: mdl-37439488

Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6 minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30 mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250 mM methanol and 20 µM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.


Magnetic Resonance Imaging , Pyruvic Acid , Magnetic Resonance Imaging/methods , Solvents/chemistry , Methanol , Water/chemistry
18.
Cancers (Basel) ; 15(13)2023 Jul 05.
Article En | MEDLINE | ID: mdl-37444615

In children with bladder/prostate (BP) and perianal rhabdomyosarcoma (RMS), we use a hybrid treatment concept for those suitable, combining organ-preserving tumor resection and high-dose rate brachytherapy (HDR-BT). This treatment concept has been shown to improve outcomes. However, it is associated with specific challenges for the clinicians. The exact position of the tubes for BT is a prerequisite for precise radiotherapy. It can finally be determined only with an MRI or CT scan. We evaluated the use of an intraoperative MRI (iMRI) to control the position of the BT tubes and for radiotherapy planning in all patients with BP and perianal RMS who received the above-mentioned combination therapy in our department since January 2021. iMRI was used in 12 children. All tubes were clearly localized. No adverse events occurred. In all 12 children, radiotherapy could be started on time. In a historical cohort without iMRI, this was not possible in 3 out of 20 children. The use of iMRI in children with BP and perianal RMS improved patient safety and treatment quality. This technology has proven to be successful for the patient population we have defined and has become a standard procedure in our institution.

19.
J Phys Chem Lett ; 14(23): 5305-5309, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37267594

Carbon-13 hyperpolarized pyruvate is about to become the next-generation contrast agent for molecular magnetic resonance imaging of cancer and other diseases. Here, efficient and rapid pyruvate hyperpolarization is achieved via signal amplification by reversible exchange (SABRE) with parahydrogen through synergistic use of substrate deuteration, alternating, and static microtesla magnetic fields. Up to 22 and 6% long-lasting 13C polarization (T1 = 3.7 ± 0.25 and 1.7 ± 0.1 min) is demonstrated for the C1 and C2 nuclear sites, respectively. The remarkable polarization levels become possible as a result of favorable relaxation dynamics at the microtesla fields. The ultralong polarization lifetimes will be conducive to yielding high polarization after purification, quality assurance, and injection of the hyperpolarized molecular imaging probes. These results pave the way to future in vivo translation of carbon-13 hyperpolarized molecular imaging probes prepared by this approach.


Magnetic Resonance Imaging , Pyruvic Acid , Magnetic Resonance Spectroscopy/methods , Carbon Isotopes
20.
J Am Chem Soc ; 145(20): 11121-11129, 2023 May 24.
Article En | MEDLINE | ID: mdl-37172079

Conventional nuclear magnetic resonance (NMR) enables detection of chemicals and their transformations by exciting nuclear spin ensembles with a radio-frequency pulse followed by detection of the precessing spins at their characteristic frequencies. The detected frequencies report on chemical reactions in real time and the signal amplitudes scale with concentrations of products and reactants. Here, we employ Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), a quantum phenomenon producing coherent emission of 13C signals, to detect chemical transformations. The 13C signals are emitted by the negatively hyperpolarized biomolecules without external radio frequency pulses and without any background signal from other, nonhyperpolarized spins in the ensemble. Here, we studied the hydrolysis of hyperpolarized ethyl-[1-13C]acetate to hyperpolarized [1-13C]acetate, which was analyzed as a model system by conventional NMR and 13C RASER. The chemical transformation of 13C RASER-active species leads to complete and abrupt disappearance of reactant signals and delayed, abrupt reappearance of a frequency-shifted RASER signal without destroying 13C polarization. The experimentally observed "quantum" RASER threshold is supported by simulations.

...