Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Diabetes ; 72(12): 1820-1834, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37757741

ABSTRACT

Many people living with diabetes also have nonalcoholic fatty liver disease (NAFLD). Interleukin-6 (IL-6) is involved in both diseases, interacting with both membrane-bound (classical) and circulating (trans-signaling) soluble receptors. We investigated whether secretion of IL-6 trans-signaling coreceptors are altered in NAFLD by diabetes and whether this might associate with the severity of fatty liver disease. Secretion patterns were investigated with use of human hepatocyte, stellate, and monocyte cell lines. Associations with liver pathology were investigated in two patient cohorts: 1) biopsy-confirmed steatohepatitis and 2) class 3 obesity. We found that exposure of stellate cells to high glucose and palmitate increased IL-6 and soluble gp130 (sgp130) secretion. In line with this, plasma sgp130 in both patient cohorts positively correlated with HbA1c, and subjects with diabetes had higher circulating levels of IL-6 and trans-signaling coreceptors. Plasma sgp130 strongly correlated with liver stiffness and was significantly increased in subjects with F4 fibrosis stage. Monocyte activation was associated with reduced sIL-6R secretion. These data suggest that hyperglycemia and hyperlipidemia can directly impact IL-6 trans-signaling and that this may be linked to enhanced severity of NAFLD in patients with concomitant diabetes. ARTICLE HIGHLIGHTS: IL-6 and its circulating coreceptor sgp130 are increased in people with fatty liver disease and steatohepatitis. High glucose and lipids stimulated IL-6 and sgp130 secretion from hepatic stellate cells. sgp130 levels correlated with HbA1c, and diabetes concurrent with steatohepatitis further increased circulating levels of all IL-6 trans-signaling mediators. Circulating sgp130 positively correlated with liver stiffness and hepatic fibrosis. Metabolic stress to liver associated with fatty liver disease might shift the balance of IL-6 classical versus trans-signaling, promoting liver fibrosis that is accelerated by diabetes.


Subject(s)
Diabetes Mellitus , Non-alcoholic Fatty Liver Disease , Humans , Cytokine Receptor gp130/metabolism , Receptors, Interleukin-6/metabolism , Interleukin-6/metabolism , Glycated Hemoglobin , Fibrosis , Glucose
2.
Nat Commun ; 13(1): 177, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017476

ABSTRACT

Metabolic stress due to nutrient excess and lipid accumulation is at the root of many age-associated disorders and the identification of therapeutic targets that mimic the beneficial effects of calorie restriction has clinical importance. Here, using C. elegans as a model organism, we study the roles of a recently discovered enzyme at the heart of metabolism in mammalian cells, glycerol-3-phosphate phosphatase (G3PP) (gene name Pgp) that hydrolyzes glucose-derived glycerol-3-phosphate to glycerol. We identify three Pgp homologues in C. elegans (pgph) and demonstrate in vivo that their protein products have G3PP activity, essential for glycerol synthesis. We demonstrate that PGPH/G3PP regulates the adaptation to various stresses, in particular hyperosmolarity and glucotoxicity. Enhanced G3PP activity reduces fat accumulation, promotes healthy aging and acts as a calorie restriction mimetic at normal food intake without altering fertility. Thus, PGP/G3PP can be considered as a target for age-related metabolic disorders.


Subject(s)
Adaptation, Physiological/genetics , Caenorhabditis elegans/genetics , Glycerophosphates/metabolism , Helminth Proteins/genetics , Longevity/genetics , Phosphoric Monoester Hydrolases/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caloric Restriction , Eating/genetics , Gene Expression Regulation , Glucose/metabolism , Glucose/pharmacology , Glycerol/metabolism , Glycerol-3-Phosphate O-Acyltransferase/genetics , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Helminth Proteins/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Osmolar Concentration , Phosphoric Monoester Hydrolases/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Stress, Physiological/genetics
3.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33201859

ABSTRACT

Enhanced energy expenditure in brown (BAT) and white adipose tissues (WAT) can be therapeutic against metabolic diseases. We examined the thermogenic role of adipose α/ß-hydrolase domain 6 (ABHD6), which hydrolyzes monoacylglycerol (MAG), by employing adipose-specific ABHD6-KO mice. Control and KO mice showed similar phenotypes at room temperature and thermoneutral conditions. However, KO mice were resistant to hypothermia, which can be accounted for by the simultaneously increased lipolysis and lipogenesis of the thermogenic glycerolipid/free fatty acid (GL/FFA) cycle in visceral fat, despite unaltered uncoupling protein 1 expression. Upon cold stress, nuclear 2-MAG levels increased in visceral WAT of the KO mice. Evidence is provided that 2-MAG causes activation of PPARα in white adipocytes, leading to elevated expression and activity of GL/FFA cycle enzymes. In the ABHD6-ablated BAT, glucose and oxidative metabolism were elevated upon cold induction, without changes in GL/FFA cycle and lipid turnover. Moreover, response to in vivo ß3-adrenergic stimulation was comparable between KO and control mice. Our data reveal a MAG/PPARα/GL/FFA cycling metabolic signaling network in visceral adipose tissue, which contributes to cold tolerance, and that adipose ABHD6 is a negative modulator of adaptive thermogenesis.


Subject(s)
Monoacylglycerol Lipases/metabolism , Thermogenesis/genetics , Thermotolerance/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Cold Temperature , Energy Metabolism , Female , Hydrolases/metabolism , Male , Mice , Mice, Inbred C57BL , Monoacylglycerol Lipases/genetics , Monoglycerides/metabolism , Obesity/metabolism , PPAR alpha/metabolism , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...