Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39061915

ABSTRACT

Chemotherapy with irinotecan (CPT-11), the pro-drug of the highly cytotoxic SN-38, is among the standard-of-care treatments for colorectal cancer. To counteract undesired toxic side effects on healthy tissue such as the intestinal epithelium, the use of preparations rich in polyphenols with anti-oxidative and anti-inflammatory properties such as anthocyanins has been proposed. In the present study, the question of whether non-tumorigenic human epithelium cells (HCEC-1CT) can be protected against the cytotoxic impact of SN-38 by anthocyanin-rich polyphenol extracts without compromising the desired therapeutic effect against tumor cells (HCT-116) was addressed. Hence, single and combinatory effects of anthocyanin-rich polyphenol extracts of elderberry (EB), bilberry (Bil), blackberry (BB) and black currant (BC) with the chemotherapeutic drug SN-38 were investigated. Out of the extracts, BB showed the most potent concentration-dependent cytotoxicity alone and in combination with SN-38, with even stronger effects in non-tumorigenic HCEC-1CT cells. In cytotoxic concentrations, BB decreased the level of DNA/topoisomerase I covalent complexes in HCEC-1CT cells below base level but without concomitant reduction in SN-38-induced DNA strand breaks. The herein reported data argue towards an interference of anthocyanins with successful treatment of cancer cells and a lack of protective properties in healthy cells.

2.
Molecules ; 28(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067418

ABSTRACT

Anti-oxidant, -inflammatory, and -carcinogenic activities of bioactive plant constituents, such as anthocyanins, have been widely discussed in literature. However, the potential interaction of anthocyanin-rich extracts with routinely used chemotherapeutics is still not fully elucidated. In the present study, anthocyanin-rich polyphenol extracts of blackberry (BB), bilberry (Bil), black currant (BC), elderberry (EB), and their respective main anthocyanins (cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-sambubioside) were investigated concerning their cytotoxic and DNA-damaging properties in murine CT26 cells either alone or in combination with the chemotherapeutic agent SN-38. BB exerted potent cytotoxic effects, while Bil, BC, and EB only had marginal effects on cell viability. Single anthocyanins comprised of the extracts could not induce comparable effects. Even though the BB extract further pronounced SN-38-induced cytotoxicity and inhibited cell adhesion at 100-200 µg/mL, no effect on DNA damage was observed. In conclusion, anti-carcinogenic properties of the extracts on CT26 cells could be ranked BB >> BC ≥ Bil ≈ EB. Mechanisms underlying the potent cytotoxic effects are still to be elucidated since the induction of DNA damage does not play a role.


Subject(s)
Anthocyanins , Colonic Neoplasms , Mice , Animals , Anthocyanins/pharmacology , Fruit , Irinotecan , Plant Extracts/pharmacology , Colonic Neoplasms/drug therapy , Glucosides/pharmacology
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638824

ABSTRACT

An anthocyanin-rich diet is considered to protect against chronic inflammatory processes although the bioavailability of anthocyanins is regarded as rather low. Moreover, the immunomodulatory role of anthocyanins is not fully understood yet. In the present study, fractions of blackberry (Rubus fruticosus) juice were investigated in plasma-relevant concentrations with respect to their immunomodulatory properties in lipopolysaccharide (LPS)-challenged THP-1-derived macrophages. The complex blackberry extract acted ineffective as well as potential degradation products. Cyanidin-3O-glucoside (Cy3glc), the main constituent of blackberry anthocyanins, diminished TNF-α levels at a concentration of 0.02 µg/mL, indicating protective effects as measured with quantitative RT-PCR and multiplex cytokine assays. LPS-boosted activity of transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) of differentiated THP-1 reporter gene cells was marginally inhibited by Cy3glc. LPS-induced microRNA-155 was further increased, supporting the evidence of protection. Of note, fractions obtained from blackberry juice, in particular cyanidin-3O-(6″-dioxalylglucoside), were displaying potential pro-inflammatory properties as these elevated IL-6 and TNF-α levels. In conclusion, highly purified anthocyanin fractions of blackberry juice display both anti- and pro-inflammatory properties at plasma-relevant concentrations depending on their structure and substitution pattern.


Subject(s)
Anthocyanins/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophages/metabolism , Rubus/chemistry , Anthocyanins/chemistry , Anti-Inflammatory Agents/chemistry , Humans , Interleukin-6/biosynthesis , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , THP-1 Cells , Tumor Necrosis Factor-alpha/biosynthesis
4.
Mol Nutr Food Res ; 63(20): e1900341, 2019 10.
Article in English | MEDLINE | ID: mdl-31584250

ABSTRACT

SCOPE: Alternariol (AOH), a toxic secondary metabolite of Alternaria spp., may contaminate a broad spectrum of food and feed. Besides its cytotoxic, genotoxic, and estrogenic properties, several studies report the potential of AOH to suppress the rich network of immune responses. The specific effect of AOH on inflammation-related signaling in non-immune cells of the intestinal epithelial layer has, however, not been investigated yet. Since intestinal epithelial cells (IECs) are, compared to underlying cells, exposed to higher concentrations of the ingested mycotoxin, the question is addressed whether immunomodulation by AOH at the gastrointestinal barrier must be considered. METHODS AND RESULTS: The impact of AOH (0.02-40 µm) on inflammatory signaling in either IL-1ß-stimulated or non-stimulated differentiated Caco-2 cells is determined. AOH significantly reduces IL-1ß transcription after 5 h but shows an increasing tendency on IL-8 transcript levels after long-term exposure (20 h). In IL-1ß-stimulated cells, AOH (20-40 µm) augments TNF-α transcripts while repressing IL-8, IL-6, and IL-1ß transcription as well as IL-8 secretion. Furthermore, inflammation-related microRNAs miR-16, miR-146a, miR-125b, and miR-155 are altered in response to AOH. CONCLUSION: The obtained data indicate that AOH represses immune responses in an inflamed environment, possibly leading to higher susceptibility to diseases.


Subject(s)
Immunosuppressive Agents/pharmacology , Interleukin-1beta/pharmacology , Lactones/pharmacology , Mycotoxins/pharmacology , Caco-2 Cells , Cell Differentiation , Cell Survival/drug effects , Cytokines/genetics , Humans , MicroRNAs/analysis
5.
Arch Toxicol ; 92(11): 3347-3358, 2018 11.
Article in English | MEDLINE | ID: mdl-30175388

ABSTRACT

Alternariol (AOH) is a secondary metabolite formed by black mold of the genus Alternaria alternata. Due to limited hazard and occurrence data, AOH is still considered as an "emerging mycotoxin" and, as such, not monitored and regulated yet. Recent studies indicate immunosuppressive effects in vitro by altering the expression of CD molecules and proinflammatory cytokines, which are indispensable in mounting an innate immune response. However, the mode of action by which AOH exerts its immunosuppressive effects has not been unraveled yet. The present study aimed to characterise the impact of AOH on the nuclear factor kappa B (NF-κB) pathway, the expression of NF-κB target cytokines and involved regulatory microRNAs (miRNAs). In THP-1 derived macrophages, AOH (1-20 µM) was found to suppress lipopolysaccharide (LPS)-induced NF-κB pathway activation, decrease secretion of the proinflammatory cytokines IL-8, IL-6, TNF-α and to induce secretion of the anti-inflammatory IL-10. Thereby, a distinct pattern of cytokine mRNA levels was monitored, varying between short- and long-term exposure. Concomitantly, AOH (2-20 µM) affected the transcription levels of miR-146a and miR-155 in LPS-stimulated THP-1 derived macrophages dose-dependently by down- and upregulation, respectively. In contrast, transcription of miR-16 and miR-125b, two other immune-related miRNAs, was not modulated. In the absence of a LPS stimulus, AOH (20 µM) did not affect basal NF-κB activity, but increased IL-10 transcription. Collectively, our results indicate, that AOH itself does not induce a proinflammatory immune response in human macrophages; however, in an inflamed environment it possesses the ability to repress inflammation by targeting the NF-κB signalling pathway and regulatory miRNAs.


Subject(s)
Immunosuppressive Agents/pharmacology , Inflammation/prevention & control , Lactones/pharmacology , Macrophages/drug effects , NF-kappa B/antagonists & inhibitors , Signal Transduction/drug effects , Cytokines/genetics , Cytokines/metabolism , Humans , Lipopolysaccharides/pharmacology , THP-1 Cells , Transcription, Genetic/drug effects
6.
Development ; 134(19): 3495-505, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17728351

ABSTRACT

We have identified two redundant GTPase activating proteins (GAPs) - RGA-3 and RGA-4 - that regulate Rho GTPase function at the plasma membrane in early Caenorhabditis elegans embryos. Knockdown of both RhoGAPs resulted in extensive membrane ruffling, furrowing and pronounced pseudo-cleavages. In addition, the non-muscle myosin NMY-2 and RHO-1 accumulated on the cortex at sites of ruffling. RGA-3 and RGA-4 are GAPs for RHO-1, but most probably not for CDC-42, because only RHO-1 was epistatic to the two GAPs, and the GAPs had no obvious influence on CDC-42 function. Furthermore, knockdown of either the RHO-1 effector, LET-502, or the exchange factor for RHO-1, ECT-2, alleviated the membrane-ruffling phenotype caused by simultaneous knockdown of both RGA-3 and RGA-4 [rga-3/4 (RNAi)]. GFP::PAR-6 and GFP::PAR-2 were localized at the anterior and posterior part of the early C. elegans embryo, respectively showing that rga-3/4 (RNAi) did not interfere with polarity establishment. Most importantly, upon simultaneous knockdown of RGA-3, RGA-4 and the third RhoGAP present in the early embryo, CYK-4, NMY-2 spread over the entire cortex and GFP::PAR-2 localization at the posterior cortex was greatly diminished. These results indicate that the functions of CYK-4 are temporally and spatially distinct from RGA-3 and RGA-4 (RGA-3/4). RGA-3/4 and CYK-4 also play different roles in controlling LET-502 activation in the germ line, because rga-3/4 (RNAi), but not cyk-4 (RNAi), aggravated the let-502(sb106) phenotype. We propose that RGA-3/4 and CYK-4 control with which effector molecules RHO-1 interacts at particular sites at the cortex in the zygote and in the germ line.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism , GTPase-Activating Proteins/physiology , Animals , Animals, Genetically Modified , Base Sequence , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Membrane Structures/metabolism , Cell Membrane Structures/ultrastructure , Cell Polarity , Cytokinesis , DNA, Complementary/genetics , GTPase-Activating Proteins/genetics , Germ Cells/cytology , Germ Cells/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Phenotype , RNA Interference
7.
Eur J Cell Biol ; 84(1): 75-82, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15724817

ABSTRACT

Several different processes must be completed in order to proceed through cell division. First, the centrosomes have to be duplicated and the genomic material is replicated. The separation of the chromatin is achieved by a bipolar spindle, which in turn is organized by the two centrosomes. The last step of cell division involves the separation of cellular content and the cleavage of the cell by cytokinesis. We used RNAi to study the centrosomal component SAS-5 in the early Caenorhabditis elegans embryo. While the first cell division and the establishment of polarity of sas-5 dsRNA-treated embryos was indistinguishable from wild type, subsequent cleavages were abnormal. Time-lapse microscopy studies of worms expressing beta-tubulin::GFP revealed that the absence of SAS-5 results in a failure of mitotic spindle assembly starting at the two-cell stage embryo. Furthermore, the chromatin in at least one of the two cells in the early embryo was dispersed. Yet, this dispersion did neither trigger apoptosis nor affect nuclear envelope assembly. No intrinsic size control for the nucleus seems to exist in the early embryo.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Animals , Apoptosis , Caenorhabditis elegans , Cell Cycle , Cell Division , Cell Nucleus/metabolism , Centrosome/metabolism , Chromatin/metabolism , Cloning, Molecular , Embryo, Nonmammalian , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Mitosis , RNA Interference , RNA, Double-Stranded/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL