Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
1.
Mol Cancer Ther ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087451

ABSTRACT

Triple negative breast cancer (TNBC) represents a therapeutic challenge where standard chemotherapy is limited to paclitaxel. MBQ-167, a clinical stage small molecule inhibitor that targets Rac and Cdc42, inhibits tumor growth and metastasis in mouse models of TNBC. Herein, we investigated the efficacy of MBQ-167 in combination with paclitaxel in TNBC pre-clinical models, as a prelude to safety trials of this combination in advanced breast cancer patients. Individual MBQ-167 or combination therapy with paclitaxel was more effective at reducing TNBC cell viability and increasing apoptosis compared to paclitaxel alone. In orthotopic mouse models of human TNBC (MDA-MB-231 and MDA-MB-468), individual MBQ-167, paclitaxel, or the combination reduced mammary tumor growth with similar efficacy, with no apparent liver toxicity. However, paclitaxel single agent treatment significantly increased lung metastasis, while MBQ-167, single or combined, reduced lung metastasis. In the syngeneic 4T1/BALB/c model, combined MBQ-167 and paclitaxel decreased established lung metastases by ~80%. To determine the molecular basis for the improved efficacy of the combined treatment on metastasis, 4T1 tumor extracts from BALB/c mice treated with MBQ-167, paclitaxel, or the combination were subjected to transcriptomic analysis. Gene set enrichment identified specific downregulation of central carbon metabolic pathways by the combination of MBQ-167 and Paclitaxel but not individual compounds. Biochemical validation, by immunoblotting and metabolic Seahorse analysis, shows that combined MBQ-167 and paclitaxel reduces glycolysis. This study provides a strong rationale for the clinical testing of MBQ-167 in combination with paclitaxel as a potential therapeutic for TNBC and identifies a unique mechanism of action.

2.
EMBO Rep ; 25(8): 3202-3220, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095610

ABSTRACT

In eukaryotes, DNA is packaged into chromatin with the help of highly conserved histone proteins. Together with DNA-binding proteins, posttranslational modifications (PTMs) on these histones play crucial roles in regulating genome function, cell fate determination, inheritance of acquired traits, cellular states, and diseases. While most studies have focused on individual DNA-binding proteins, chromatin proteins, or histone PTMs in bulk cell populations, such chromatin features co-occur and potentially act cooperatively to accomplish specific functions in a given cell. This review discusses state-of-the-art techniques for the simultaneous profiling of multiple chromatin features in low-input samples and single cells, focusing on histone PTMs, DNA-binding, and chromatin proteins. We cover the origins of the currently available toolkits, compare and contrast their characteristic features, and discuss challenges and perspectives for future applications. Studying the co-occurrence of histone PTMs, DNA-binding proteins, and chromatin proteins in single cells will be central for a better understanding of the biological relevance of combinatorial chromatin features, their impact on genomic output, and cellular heterogeneity.


Subject(s)
Chromatin , DNA-Binding Proteins , Histones , Protein Processing, Post-Translational , Histones/metabolism , Chromatin/metabolism , Chromatin/genetics , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Animals , DNA/metabolism , DNA/genetics
3.
Methods Mol Biol ; 2846: 1-16, 2024.
Article in English | MEDLINE | ID: mdl-39141226

ABSTRACT

For the genome-wide mapping of histone modifications, chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing remains the benchmark method. While crosslinked ChIP can be used for all kinds of targets, native ChIP is predominantly used for strong and direct DNA interactors like histones and their modifications. Here we describe a native ChIP protocol that can be used for cells and tissue material.


Subject(s)
Chromatin Immunoprecipitation , Histones , Chromatin Immunoprecipitation/methods , Histones/metabolism , Histones/genetics , Humans , Histone Code , High-Throughput Nucleotide Sequencing/methods , Protein Processing, Post-Translational , Animals , Chromatin/metabolism , Chromatin/genetics , DNA/genetics , DNA/metabolism , Chromatin Immunoprecipitation Sequencing/methods
4.
Obes Rev ; : e13800, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072971

ABSTRACT

Psychological distress has a demonstrable impact on cardiovascular diseases (CVD) and risk factors. Transcendental Meditation (TM) has been shown to reduce stress and improve health and well-being. The current review aimed to synthesize the evidence on the effects of TM on cardiometabolic outcomes and identify gaps for future research. We searched PubMed/MEDLINE, EMBASE, SCOPUS, and Web of Science databases for relevant literature. Forty-five papers that reported studies of TM on cardiometabolic risk factors and diseases were included. Evidence shows that TM is effective in reducing blood pressure (BP). We found some evidence that TM can improve insulin resistance and may play a role in improving dyslipidemia, exercise tolerance, and myocardial blood flow, and in reducing carotid intima-media thickness and left ventricular mass. Studies show that long-term TM practice can reduce the risk of myocardial infarction, stroke, and CVD mortality. This review identified that certain studies have high participant drop-out rates, and fewer studies targeted comprehensive cardiometabolic outcomes beyond BP with longer follow-up periods. We found that most studies were conducted in specific populations, which may limit generalizability. In conclusion, TM has the potential to improve cardiometabolic health; however, research gaps highlight the need for larger phase III multicenter clinical trials with long-term follow-ups.

5.
NAR Cancer ; 6(2): zcae026, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828390

ABSTRACT

The now well described canonical mRNA translation initiation mechanism of m7G 'cap' recognition by cap-binding protein eIF4E and assembly of the canonical pre-initiation complex consisting of scaffolding protein eIF4G and RNA helicase eIF4A has historically been thought to describe all cellular mRNA translation. However, the past decade has seen the discovery of alternative mechanisms to canonical eIF4E mediated mRNA translation initiation. Studies have shown that non-canonical alternate mechanisms of cellular mRNA translation initiation, whether cap-dependent or independent, serve to provide selective translation of mRNAs under cell physiological and pathological stress conditions. These conditions typically involve the global downregulation of canonical eIF4E1/cap-mediated mRNA translation, and selective translational reprogramming of the cell proteome, as occurs in tumor development and malignant progression. Cancer cells must be able to maintain physiological plasticity to acquire a migratory phenotype, invade tissues, metastasize, survive and adapt to severe microenvironmental stress conditions that involve inhibition of canonical mRNA translation initiation. In this review we describe the emerging, important role of non-canonical, alternate mechanisms of mRNA translation initiation in cancer, particularly in adaptation to stresses and the phenotypic cell fate changes involved in malignant progression and metastasis. These alternate translation initiation mechanisms provide new targets for oncology therapeutics development.

6.
Nat Struct Mol Biol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918637

ABSTRACT

Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors.

7.
Biomater Sci ; 12(11): 2951-2959, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656316

ABSTRACT

The development of targeted anti-cancer therapeutics offers the potential for increased efficacy of drugs and diagnostics. Utilizing modalities agnostic to tumor type, such as the hypoxic tumor microenvironment (TME), may assist in the development of universal tumor targeting agents. The hypoxia-inducible factor (HIF), in particular HIF1, plays a key role in tumor adaptation to hypoxia, and inhibiting its interaction with p300 has been shown to provide therapeutic potential. Using a multivalent assembled protein (MAP) approach based on the self-assembly of the cartilage oligomeric matrix protein coiled-coil (COMPcc) domain fused to the critical residues of the C-terminal transactivation domain (C-TAD) of the α subunit of HIF1 (HIF1α), we generate HIF1α-MAP (H-MAP). The resulting H-MAP demonstrates picomolar binding affinity to p300, the ability to downregulate hypoxia-inducible genes, and in vivo tumor targeting capability.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Protein Engineering , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Humans , Animals , Protein Domains , Mice , Cell Line, Tumor , Cartilage Oligomeric Matrix Protein/chemistry , Cartilage Oligomeric Matrix Protein/metabolism , Tumor Microenvironment , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/chemistry
8.
Front Public Health ; 12: 1380626, 2024.
Article in English | MEDLINE | ID: mdl-38633233

ABSTRACT

In the midst of global armed conflicts, notably the Israel-Hamas and Ukraine-Russia wars, there is an urgent need for innovative public health strategies in peacebuilding. The devastating impact of wars, including mortality, injury, disease, and the diversion of healthcare resources, necessitates effective and durable interventions. This perspective aligns with WHO recommendations and examines the role of evidence-based meditation from Ayurveda and Yoga in public health to mitigate collective stress and prevent collective violence and war. It highlights the Transcendental Meditation program, recognized for reducing stress, with contemporary evidence supporting its effectiveness in mental health, mind-body disorders, cardiovascular disease, and public health. Empirical studies with cross-cultural replications indicate that these Traditional Medicine meditation practices can reduce collective stress and prevent collective violence and war activity while improving quality of life. The mechanisms of group meditation in mitigating collective violence are explored through public health models, cognitive neuroscience, population neuroscience, quantum physics principles, and systems medicine. This perspective suggests that Transcendental Meditation and the advanced TM-Sidhi program, as a component of Traditional Medicine, can provide a valuable platform for enhancing societal well-being and peace by addressing brain-based factors fundamental to collective stress and violence.


Subject(s)
Meditation , Humans , Quality of Life , Violence/prevention & control , Violence/psychology , Armed Conflicts , Medicine, Traditional
10.
ACS Biomater Sci Eng ; 10(5): 3425-3437, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38622760

ABSTRACT

Triple-negative breast cancer (TNBC) lacks expressed protein targets, making therapy development challenging. Hydrogels offer a promising new route in this regard by improving the chemotherapeutic efficacy through increased solubility and sustained release. Moreover, subcutaneous hydrogel administration reduces patient burden by requiring less therapy and shorter treatment times. We recently established the design principles for the supramolecular assembly of single-domain coiled-coils into hydrogels. Using a modified computational design algorithm, we designed Q8, a hydrogel with rapid assembly for faster therapeutic hydrogel preparation. Q8 encapsulates and releases doxorubicin (Dox), enabling localized sustained release via subcutaneous injection. Remarkably, a single subcutaneous injection of Dox-laden Q8 (Q8•Dox) significantly suppresses tumors within just 1 week. This work showcases the bottom-up engineering of a fully protein-based drug delivery vehicle for improved TBNC treatment via noninvasive localized therapy.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Hydrogels , Triple Negative Breast Neoplasms , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Hydrogels/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Female , Humans , Animals , Delayed-Action Preparations/chemistry , Cell Line, Tumor , Protein Engineering , Mice , Drug Liberation , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/therapeutic use , Antibiotics, Antineoplastic/chemistry
11.
Nano Lett ; 24(12): 3678-3685, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38471109

ABSTRACT

Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.

12.
Nature ; 627(8004): 671-679, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448585

ABSTRACT

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin , Nuclear Proteins , Nucleosomes , Proteomics , Humans , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , Enhancer Elements, Genetic , Heterochromatin/genetics , Heterochromatin/metabolism , Histones/metabolism , Nuclear Proteins/analysis , Nuclear Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic , Protein Binding , Proteomics/methods
14.
Front Oncol ; 13: 1230934, 2023.
Article in English | MEDLINE | ID: mdl-37601653

ABSTRACT

Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.

15.
Nucleic Acids Res ; 51(15): 7709-7713, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37493596
16.
Mol Metab ; 74: 101748, 2023 08.
Article in English | MEDLINE | ID: mdl-37290673

ABSTRACT

OBJECTIVE: Cancer cells convert more glucose into lactate than healthy cells, what contributes to their growth advantage. Pyruvate kinase (PK) is a key rate limiting enzyme in this process, what makes it a promising potential therapeutic target. However, currently it is still unclear what consequences the inhibition of PK has on cellular processes. Here, we systematically investigate the consequences of PK depletion for gene expression, histone modifications and metabolism. METHODS: Epigenetic, transcriptional and metabolic targets were analysed in different cellular and animal models with stable knockdown or knockout of PK. RESULTS: Depleting PK activity reduces the glycolytic flux and causes accumulation of glucose-6-phosphate (G6P). Such metabolic perturbation results in stimulation of the activity of a heterodimeric pair of transcription factors MondoA and MLX but not in a major reprogramming of the global H3K9ac and H3K4me3 histone modification landscape. The MondoA:MLX heterodimer upregulates expression of thioredoxin-interacting protein (TXNIP) - a tumour suppressor with multifaceted anticancer activity. This effect of TXNIP upregulation extends beyond immortalised cancer cell lines and is applicable to multiple cellular and animal models. CONCLUSIONS: Our work shows that actions of often pro-tumorigenic PK and anti-tumorigenic TXNIP are tightly linked via a glycolytic intermediate. We suggest that PK depletion stimulates the activity of MondoA:MLX transcription factor heterodimers and subsequently, increases cellular TXNIP levels. TXNIP-mediated inhibition of thioredoxin (TXN) can reduce the ability of cells to scavenge reactive oxygen species (ROS) leading to the oxidative damage of cellular structures including DNA. These findings highlight an important regulatory axis affecting tumour suppression mechanisms and provide an attractive opportunity for combination cancer therapies targeting glycolytic activity and ROS-generating pathways.


Subject(s)
Neoplasms , Pyruvate Kinase , Animals , Pyruvate Kinase/genetics , Reactive Oxygen Species , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Thioredoxins/chemistry , Thioredoxins/metabolism
17.
Cell Rep ; 42(6): 112646, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37314929

ABSTRACT

Cancer cell plasticity enables cell survival in harsh physiological environments and fate transitions such as the epithelial-to-mesenchymal transition (EMT) that underlies invasion and metastasis. Using genome-wide transcriptomic and translatomic studies, an alternate mechanism of cap-dependent mRNA translation by the DAP5/eIF3d complex is shown to be essential for metastasis, EMT, and tumor directed angiogenesis. DAP5/eIF3d carries out selective translation of mRNAs encoding EMT transcription factors and regulators, cell migration integrins, metalloproteinases, and cell survival and angiogenesis factors. DAP5 is overexpressed in metastatic human breast cancers associated with poor metastasis-free survival. In human and murine breast cancer animal models, DAP5 is not required for primary tumor growth but is essential for EMT, cell migration, invasion, metastasis, angiogenesis, and resistance to anoikis. Thus, cancer cell mRNA translation involves two cap-dependent mRNA translation mechanisms, eIF4E/mTORC1 and DAP5/eIF3d. These findings highlight a surprising level of plasticity in mRNA translation during cancer progression and metastasis.


Subject(s)
Breast Neoplasms , Eukaryotic Initiation Factor-3 , Eukaryotic Initiation Factor-4G , Protein Biosynthesis , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Neoplasm Metastasis , RNA, Messenger/genetics , Transcription Factors/genetics , Eukaryotic Initiation Factor-3/genetics , Eukaryotic Initiation Factor-3/metabolism
18.
Proc Natl Acad Sci U S A ; 120(15): e2207898120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37014850

ABSTRACT

Breast cancer (BC) metastasis involves cancer stem cells (CSCs) and their regulation by micro-RNAs (miRs), but miR targeting of the translation machinery in CSCs is poorly explored. We therefore screened miR expression levels in a range of BC cell lines, comparing non-CSCs to CSCs, and focused on miRs that target translation and protein synthesis factors. We describe a unique translation regulatory axis enacted by reduced expression of miR-183 in breast CSCs, which we show targets the eIF2Bδ subunit of guanine nucleotide exchange factor eIF2B, a regulator of protein synthesis and the integrated stress response (ISR) pathway. We report that reduced expression of miR-183 greatly increases eIF2Bδ protein levels, preventing strong induction of the ISR and eIF2α phosphorylation, by preferential interaction with P-eIF2α. eIF2Bδ overexpression is essential for BC cell invasion, metastasis, maintenance of metastases, and breast CSC expansion in animal models. Increased expression of eIF2Bδ, a site of action of the drug ISRIB that also prevents ISR signaling, is essential for breast CSC maintenance and metastatic capacity.


Subject(s)
MicroRNAs , Neoplasms , Animals , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Guanine Nucleotide Exchange Factors , Neoplastic Stem Cells/metabolism
19.
Trends Plant Sci ; 28(9): 1014-1032, 2023 09.
Article in English | MEDLINE | ID: mdl-37087358

ABSTRACT

As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is critical that we understand vegetation dynamic alterations. Here, we review associative drivers, impacts, and feedbacks, revealing the complexity of browning. Concomitant increases in browning include the weakening of ecosystem services and functions and alterations to vegetation structure and species composition, as well as the development of potential positive climate change feedbacks. Also discussed are the current challenges in browning detection and understanding associated impacts and feedbacks. Finally, we outline recommended strategies.


Subject(s)
Ecosystem , Forests , Feedback , Climate Change
20.
Genes Dev ; 37(7-8): 336-350, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37072228

ABSTRACT

The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis. Using high-resolution quantitative imaging and molecular biology approaches, we show that pericentromeric heterochromatin displays properties consistent with a liquid-like state at the two-cell stage, which change at the four-cell stage, when chromocenters mature and heterochromatin becomes silent. Disrupting the condensates results in altered transcript levels of pericentromeric heterochromatin, suggesting a functional role for phase separation in heterochromatin function. Thus, our work shows that mouse heterochromatin forms membrane-less compartments with biophysical properties that change during development and provides new insights into the self-organization of chromatin domains during mammalian embryogenesis.


Subject(s)
Chromatin , Heterochromatin , Animals , Mice , Embryo, Mammalian , Genome , Mammals/genetics
SELECTION OF CITATIONS
SEARCH DETAIL