Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Heliyon ; 10(11): e32053, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882374

ABSTRACT

With the recent expansion of structural variant identification in the human genome, understanding the role of these impactful variants in disease architecture is critically important. Currently, a large proportion of genome-wide-significant genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are functionally unresolved, raising the possibility that some of these SNPs are associated with disease through linkage disequilibrium with causal structural variants. Hence, understanding the linkage disequilibrium between newly discovered structural variants and statistically significant SNPs may provide a resource for further investigation into disease-associated regions in the genome. Here we present a resource cataloging structural variant-significant SNP pairs in high linkage disequilibrium. The database is composed of (i) SNPs that have exhibited genome-wide significant association with traits, primarily disease phenotypes, (ii) newly released structural variants (SVs), and (iii) linkage disequilibrium values calculated from unphased data. All data files including those detailing SV and GWAS SNP associations and results of GWAS-SNP-SV pairs are available at the SV-SNP LD Database and can be accessed at 'https://github.com/hliang-SchrodiLab/SV_SNPs. Our analysis results represent a useful fine mapping tool for interrogating SVs in linkage disequilibrium with disease-associated SNPs. We anticipate that this resource may play an important role in subsequent studies which investigate incorporating disease causing SVs into disease risk prediction models.

2.
Front Mol Biosci ; 10: 1202371, 2023.
Article in English | MEDLINE | ID: mdl-38046810

ABSTRACT

Objective: To investigate the potential association between Anoikis-related genes, which are responsible for preventing abnormal cellular proliferation, and rheumatoid arthritis (RA). Methods: Datasets GSE89408, GSE198520, and GSE97165 were obtained from the GEO with 282 RA patients and 28 healthy controls. We performed differential analysis of all genes and HLA genes. We performed a protein-protein interaction network analysis and identified hub genes based on STRING and cytoscape. Consistent clustering was performed with subgrouping of the disease. SsGSEA were used to calculate immune cell infiltration. Spearman's correlation analysis was employed to identify correlations. Enrichment scores of the GO and KEGG were calculated with the ssGSEA algorithm. The WGCNA and the DGIdb database were used to mine hub genes' interactions with drugs. Results: There were 26 differentially expressed Anoikis-related genes (FDR = 0.05, log2FC = 1) and HLA genes exhibited differential expression (P < 0.05) between the disease and control groups. Protein-protein interaction was observed among differentially expressed genes, and the correlation between PIM2 and RAC2 was found to be the highest; There were significant differences in the degree of immune cell infiltration between most of the immune cell types in the disease group and normal controls (P < 0.05). Anoikis-related genes were highly correlated with HLA genes. Based on the expression of Anoikis-related genes, RA patients were divided into two disease subtypes (cluster1 and cluster2). There were 59 differentially expressed Anoikis-related genes found, which exhibited significant differences in functional enrichment, immune cell infiltration degree, and HLA gene expression (P < 0.05). Cluster2 had significantly higher levels in all aspects than cluster1 did. The co-expression network analysis showed that cluster1 had 51 hub differentially expressed genes and cluster2 had 72 hub differentially expressed genes. Among them, three hub genes of cluster1 were interconnected with 187 drugs, and five hub genes of cluster2 were interconnected with 57 drugs. Conclusion: Our study identified a link between Anoikis-related genes and RA, and two distinct subtypes of RA were determined based on Anoikis-related gene expression. Notably, cluster2 may represent a more severe state of RA.

3.
Front Pharmacol ; 14: 1282610, 2023.
Article in English | MEDLINE | ID: mdl-38027004

ABSTRACT

Rheumatic and autoimmune diseases are a group of immune system-related disorders wherein the immune system mistakenly attacks and damages the body's tissues and organs. This excessive immune response leads to inflammation, tissue damage, and functional impairment. Therapeutic approaches typically involve medications that regulate immune responses, reduce inflammation, alleviate symptoms, and target specific damaged organs. Tripterygium wilfordii Hook. f., a traditional Chinese medicinal plant, has been widely studied in recent years for its application in the treatment of autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis. Numerous studies have shown that preparations of Tripterygium wilfordii have anti-inflammatory, immunomodulatory, and immunosuppressive effects, which effectively improve the symptoms and quality of life of patients with autoimmune diseases, whereas the active metabolites of T. wilfordii have been demonstrated to inhibit immune cell activation, regulate the production of inflammatory factors, and modulate the immune system. However, although these effects contribute to reductions in inflammatory responses and the suppression of autoimmune reactions, as well as minimize tissue and organ damage, the underlying mechanisms of action require further investigation. Moreover, despite the efficacy of T. wilfordii in the treatment of autoimmune diseases, its toxicity and side effects, including its potential hepatotoxicity and nephrotoxicity, warrant a thorough assessment. Furthermore, to maximize the therapeutic benefits of this plant in the treatment of autoimmune diseases and enable more patients to utilize these benefits, efforts should be made to strengthen the regulation and standardized use of T. wilfordii.

4.
Front Pharmacol ; 14: 1306584, 2023.
Article in English | MEDLINE | ID: mdl-38027031

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and joint damage. The signaling lymphocytic activation molecule (SLAMF) family of receptors are expressed on various hematopoietic and non-hematopoietic cells and can regulate both immune cell activation and cytokine production. Altered expression of certain SLAMF receptors contributes to aberrant immune responses in RA. In RA, SLAMF1 is upregulated on T cells and may promote inflammation by participating in immune cell-mediated responses. SLAMF2 and SLAMF4 are involved in regulating monocyte tumor necrosis factor production and promoting inflammation. SLAMF7 activates multiple inflammatory pathways in macrophages to drive inflammatory gene expression. SLAMF8 inhibition can reduce inflammation in RA by blocking ERK/MMPs signaling. Of note, there are differences in SLAMF receptor (SFR) expression between normal and arthritic joint tissues, suggesting a role as potential diagnostic biomarkers. This review summarizes recent advances on the roles of SLAMF receptors 1, 2, 4, 7, and 8 in RA pathogenesis. However, further research is needed to elucidate the mechanisms of SLAMF regulation of immune cells in RA. Understanding interactions between SLAMF receptors and immune cells will help identify selective strategies for targeting SLAMF signaling without compromising normal immunity. Overall, the SLAMF gene family holds promise as a target for precision medicine in RA, but additional investigation of the underlying immunological mechanisms is needed. Targeting SLAMF receptors presents opportunities for new diagnostic and therapeutic approaches to dampen damaging immune-mediated inflammation in RA.

5.
Nat Commun ; 14(1): 6030, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758692

ABSTRACT

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Proteomics , Virus Replication/genetics , SARS-CoV-2 , Antiviral Agents/metabolism , Host-Pathogen Interactions/genetics
6.
Epigenetics ; 18(1): 2231222, 2023 12.
Article in English | MEDLINE | ID: mdl-37393582

ABSTRACT

DNA methylation (DNAme) alterations are known to initiate from the precancerous stage of tumorigenesis. Herein, we investigated the global and local patterns of DNAme perturbations in tumorigenesis by analysing the genome-wide DNAme profiles of the cervix, colorectum, stomach, prostate, and liver at precancerous and cancer stages. We observed global hypomethylation in tissues of both two stages, except for the cervix, whose global DNAme level in normal tissue was lower than that of the other four tumour types. For alterations shared by both stages, there were common hyper-methylation (sHyperMethyl) and hypo-methylation (sHypoMethyl) changes, of which the latter type was more frequently identified in all tissues. Biological pathways interrupted by sHyperMethyl and sHypoMethyl alterations demonstrated significant tissue specificity. DNAme bidirectional chaos indicated by the enrichment of both sHyperMethyl and sHypoMethyl changes in the same pathway was observed in most tissues and was a common phenomenon, particularly in liver lesions. Moreover, for the same enriched pathways, different tissues may be affected by distinct DNAme types. For the PI3K-Akt signalling pathway, sHyperMethyl enrichment was observed in the prostate dataset, but sHypoMethyl enrichment was observed in the colorectum and liver datasets. Nevertheless, they did not show an increased possibility in survival prediction of patients in comparison with other DNAme types. Additionally, our study demonstrated that gene-body DNAme changes of tumour suppressor genes and oncogenes may persist from precancerous lesions to the tumour. Overall, we demonstrate the tissue specificity and commonality of cross-stage alterations in DNA methylation profiles in multi-tissue tumorigenesis.


Subject(s)
DNA Methylation , Precancerous Conditions , Male , Female , Humans , Organ Specificity , Phosphatidylinositol 3-Kinases/genetics , Precancerous Conditions/genetics , Carcinogenesis/genetics
7.
Funct Integr Genomics ; 23(2): 198, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37273114

ABSTRACT

Programmed cell death (PCD) resistance is a key driver of cancer occurrence and development. The prognostic relevance of PCD-related genes in hepatocellular carcinoma (HCC) has attracted considerable attention in recent years. However, there is still a lack of efforts to compare the methylation status of different types of PCD genes in HCC and their roles in its surveillance. The methylation status of genes related to pyroptosis, apoptosis, autophagy, necroptosis, ferroptosis, and cuproptosis was analyzed in tumor and non-tumor tissues from TCGA. Whole-genome bisulfite sequencing (WGBS) data of paired tumor tissue and buffy coat samples were used to filter the potential interference of blood leukocytes in cell-free DNA (cfDNA). The WGBS data of healthy individuals' and early-stage HCC patients' cfDNA were analyzed to evaluate the distinguishing ability. The average gene body methylation (gbDNAme) of pyroptosis-related genes (PRGs) was significantly altered in HCC tissues relative to normal tissues, and their distinguishing ability was higher compared to the other types of PCD-related genes. The gbDNAme of NLRP7, NLRP2, and NLRP3 was reflective of the hypomethylation in HCC tissues, and methylation levels of NLRP3 correlated positively with its expression level (r=0.51). The candidate hypomethylated PRGs could discriminate between early HCC patients and healthy controls in cfDNA analysis with high accuracy (area under the receiver operation curve, AUC=0.94). Furthermore, the hypomethylation of PRGs was associated with poor prognosis of HCC. Gene body hypomethylation of PRGs is a promising biomarker for early HCC detection, monitoring of tumor recurrence, and prognosis prediction.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Carcinoma, Hepatocellular , Liver Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell-Free Nucleic Acids , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/genetics
8.
Epigenetics ; 18(1): 2195307, 2023 12.
Article in English | MEDLINE | ID: mdl-37005704

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease. However, a detailed DNA methylation (DNAme) landscape has not yet been elucidated. Our study combined DNAme and transcriptome profiles for HCM myocardium and identify aberrant DNAme associated with altered myocardial function in HCM. The transcription of methylation-related genes did not significantly differ between HCM and normal myocardium. Nevertheless, the former had an altered DNAme profile compared with the latter. The hypermethylated and hypomethylated sites in HCM tissues had chromosomal distributions and functional enrichment of correlated genes differing from those of their normal tissue counterparts. The GO analysis of network underlying the genes correlated with DNAme alteration and differentially expressed genes (DEGs) shows functional clusters centred on immune cell function and muscle system processes. In KEGG analysis, only the calcium signalling pathway was enriched either by the genes correlated with changes in DNAme or DEGs. The protein-protein interactions (PPI) underlying the genes altered at both the DNAme and transcriptional highlighted two important functional clusters. One of these was related to the immune response and had the estrogen receptor-encoding ESR1 gene as its node. The other cluster comprised cardiac electrophysiology-related genes. Intelliectin-1 (ITLN1), a component of the innate immune system, was transcriptionally downregulated in HCM and had a hypermethylated site within 1500 bp upstream of the ITLN1 transcription start site. Estimates of immune infiltration demonstrated a relative decline in immune cell population diversity in HCM. A combination of DNAme and transcriptome profiles may help identify and develop new therapeutic targets for HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Epigenome , Humans , DNA Methylation , Gene Expression Profiling , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Transcriptome , Electrophysiology
9.
Am J Hum Genet ; 110(4): 575-591, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37028392

ABSTRACT

Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.


Subject(s)
Epistasis, Genetic , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Genotype , Biological Specimen Banks , United Kingdom , Polymorphism, Single Nucleotide/genetics
10.
Front Immunol ; 14: 1137918, 2023.
Article in English | MEDLINE | ID: mdl-36875082

ABSTRACT

Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation that affects synovial tissues of multiple joints. Granzymes (Gzms) are serine proteases that are released into the immune synapse between cytotoxic lymphocytes and target cells. They enter target cells with the help of perforin to induce programmed cell death in inflammatory and tumor cells. Gzms may have a connection with RA. First, increased levels of Gzms have been found in the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to inflammation by degrading the extracellular matrix and promoting cytokine release. They are thought to be involved in RA pathogenesis and have the potential to be used as biomarkers for RA diagnosis, although their exact role is yet to be fully elucidated. The purpose of this review was to summarize the current knowledge regarding the possible role of the granzyme family in RA, with the aim of providing a reference for future research on the mechanisms of RA and the development of new therapies.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Humans , Granzymes , Inflammation , Synovial Membrane
11.
Front Immunol ; 14: 1114350, 2023.
Article in English | MEDLINE | ID: mdl-36825000

ABSTRACT

Rheumatoid arthritis (RA) is a highly disabling chronic autoimmune disease. Multiple factors contribute to the complex pathological process of RA, in which an abnormal autoimmune response, high survival of inflammatory cells, and excessive release of inflammatory factors lead to a severe chronic inflammatory response. Clinical management of RA remains limited; therefore, exploring and discovering new mechanisms of action could enhance clinical benefits for patients with RA. Important bidirectional communication occurs between the brain and immune system in inflammatory diseases such as RA, and circulating immune complexes can cause neuroinflammatory responses in the brain. The gamma-aminobutyric acid (GABA)ergic system is a part of the nervous system that primarily comprises GABA, GABA-related receptors, and GABA transporter (GAT) systems. GABA is an inhibitory neurotransmitter that binds to GABA receptors in the presence of GATs to exert a variety of pathophysiological regulatory effects, with its predominant role being neural signaling. Nonetheless, the GABAergic system may also have immunomodulatory effects. GABA/GABA-A receptors may inhibit the progression of inflammation in RA and GATs may promote inflammation. GABA-B receptors may also act as susceptibility genes for RA, regulating the inflammatory response of RA via immune cells. Furthermore, the GABAergic system may modulate the abnormal pain response in RA patients. We also summarized the latest clinical applications of the GABAergic system and provided an outlook on its clinical application in RA. However, direct studies on the GABAergic system and RA are still lacking; therefore, we hope to provide potential therapeutic options and a theoretical basis for RA treatment by summarizing any potential associations.


Subject(s)
Arthritis, Rheumatoid , gamma-Aminobutyric Acid , Humans , Arthritis, Rheumatoid/metabolism , GABA Plasma Membrane Transport Proteins/metabolism , gamma-Aminobutyric Acid/metabolism , Inflammation , Receptors, GABA/metabolism
12.
Cell Mol Biol Lett ; 27(1): 108, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36476420

ABSTRACT

Absent in melanoma 2 (AIM2), a member of the Pyrin and HIN domain protein family, is a cytoplasmic receptor that recognizes double-stranded DNA. AIM2 exhibits limited expression under physiological conditions but is widely expressed in many human diseases, including autoimmune diseases, and plays an essential role in the immune response. Rheumatoid arthritis (RA) is an autoimmune disease that poses a severe threat to physical and mental health, and is caused by several genetic and metabolic factors. Multiple immune cells interact to form a complex inflammatory network that mediates inflammatory responses and bone destruction. Abnormal AIM2 expression in multiple immune cell populations (T cells, B cells, fibroblast-like synoviocytes, monocytes, and macrophages) may regulate multiple functional responses in RA through mechanisms such as pyroptosis, PANoptosis, and regulation of other molecules. In this review, we describe and summarize the functional regulation and impact of AIM2 expression in immune cells to improve our understanding of the complex pathological mechanisms. These insights may provide potential directions for the development of new clinical diagnostic strategies for RA.


Subject(s)
Arthritis, Rheumatoid , Melanoma , Humans , Arthritis, Rheumatoid/genetics , DNA-Binding Proteins
13.
Front Immunol ; 13: 1054451, 2022.
Article in English | MEDLINE | ID: mdl-36561742

ABSTRACT

Objectives: HTR2A is previously identified as a susceptibility gene for rheumatoid arthritis (RA). In this study, we performed the association analysis between DNA methylation of HTR2A with RA within peripheral blood samples. Methods: We enrolled peripheral blood samples from 235 patients with RA, 30 osteoarthritis (OA) patients, and 30 healthy controls. The DNA methylation levels of about 218 bp from chr13: 46898190 to chr13: 46897973 (GRCh38/hg38) around HTR2A cg15692052 from patients were analyzed by targeted methylation sequencing. Results: We measured methylation status for 7 CpGs in the promoter region of HTR2A and obseved overall methylation status are signficantly increased in RA compared with normal inviduals (FDR= 9.05 x 10-5). The average cg15692052 methylation levels (methylation score) showed a positive correlation with CRP (r=0.15, P=0.023). Compared with the OA group or HC group, the proportion of haplotypes CCCCCCC (FDR=0.02 and 2.81 x 10-6) is signficantly increased while TTTTTCC (FDR =0.01) and TTTTTTT(FDR =6.92 x 10-3) are significantly decreased in RA. We find methylation haplotypes combining with RF and CCP could signficantly enhance the performance of the diagnosing RA and its comorbidities (hypertension, interstitial lung disease, and osteoporosis), especially in interstitial lung disease. Conclusions: In our study, we found signficant hypermethylation of promoter region of HTR2A which indicates the potential clinical diagnostic role in rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Receptor, Serotonin, 5-HT1A , Humans , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , DNA Methylation , Lung Diseases, Interstitial/genetics , Osteoarthritis/genetics , Receptor, Serotonin, 5-HT1A/blood , Receptor, Serotonin, 5-HT1A/genetics
14.
Front Immunol ; 13: 930278, 2022.
Article in English | MEDLINE | ID: mdl-35990673

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease that severely affects patients' physical and mental health, leading to chronic synovitis and destruction of bone joints. Although various available clinical treatment options exist, patients respond with varying efficacies due to multiple factors, and there is an urgent need to discover new treatment options to improve clinical outcomes. Cuproptosis is a newly characterized form of cell death. Copper causes cuproptosis by binding to lipid-acylated components of the tricarboxylic acid cycle, leading to protein aggregation, loss of iron-sulfur cluster proteins, and eventually proteotoxic stress. Targeting copper cytotoxicity and cuproptosis are considered potential options for treating oncological diseases. The synovial hypoxic environment and the presence of excessive glycolysis in multiple cells appear to act as inhibitors of cuproptosis, which can lead to excessive survival and proliferation of multiple immune cells, such as fibroblast-like synoviocytes, effector T cells, and macrophages, further mediating inflammation and bone destruction in RA. Therefore, in this study, we attempted to elaborate and summarize the linkage of cuproptosis and key genes regulating cuproptosis to the pathological mechanisms of RA and their effects on a variety of immune cells. This study aimed to provide a theoretical basis and support for translating preclinical and experimental results of RA to clinical protocols.


Subject(s)
Apoptosis , Arthritis, Rheumatoid , Synoviocytes , Synovitis , Humans , Copper/metabolism , Inflammation/metabolism , Synoviocytes/metabolism , Synovitis/pathology
15.
Front Cell Dev Biol ; 10: 937855, 2022.
Article in English | MEDLINE | ID: mdl-35813212

ABSTRACT

Hyperuricemia and gout are complex diseases mediated by genetic, epigenetic, and environmental exposure interactions. The incidence and medical burden of gout, an inflammatory arthritis caused by hyperuricemia, increase every year, significantly increasing the disease burden. Genetic factors play an essential role in the development of hyperuricemia and gout. Currently, the search on disease-associated genetic variants through large-scale genome-wide scans has primarily improved our understanding of this disease. However, most genome-wide association studies (GWASs) still focus on the basic level, whereas the biological mechanisms underlying the association between genetic variants and the disease are still far from well understood. Therefore, we summarized the latest hyperuricemia- and gout-associated genetic loci identified in the Global Biobank Meta-analysis Initiative (GBMI) and elucidated the comprehensive potential molecular mechanisms underlying the effects of these gene variants in hyperuricemia and gout based on genetic perspectives, in terms of mechanisms affecting uric acid excretion and reabsorption, lipid metabolism, glucose metabolism, and nod-like receptor pyrin domain 3 (NLRP3) inflammasome and inflammatory pathways. Finally, we summarized the potential effect of genetic variants on disease prognosis and drug efficacy. In conclusion, we expect that this summary will increase our understanding of the pathogenesis of hyperuricemia and gout, provide a theoretical basis for the innovative development of new clinical treatment options, and enhance the capabilities of precision medicine for hyperuricemia and gout treatment.

16.
Front Immunol ; 13: 903475, 2022.
Article in English | MEDLINE | ID: mdl-35795672

ABSTRACT

Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/ß-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Epigenesis, Genetic , Fibroblasts/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Pyroptosis , Synoviocytes/metabolism
17.
Front Med (Lausanne) ; 9: 799440, 2022.
Article in English | MEDLINE | ID: mdl-35602512

ABSTRACT

Purpose: This study aimed to provide a comprehensive understanding of the genome-wide expression patterns in the synovial tissue samples of patients with rheumatoid arthritis (RA) to investigate the potential mechanisms regulating RA occurrence and development. Methods: Transcription profiles of the synovial tissue samples from nine patients with RA and 15 patients with osteoarthritis (OA) (control) from the East Asian population were generated using RNA sequencing (RNA-seq). Gene set enrichment analysis (GSEA) was used to analyze all the detected genes and the differentially expressed genes (DEGs) were identified using DESeq. To further analyze the DEGs, the Gene Ontology (GO) functional enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. The protein-protein interaction (PPI) network of the DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and the hub genes were identified by topology clustering with the Molecular Complex Detection (MCODE)-Cytoscape. The most important hub genes were validated using quantitative real-time PCR (qRT-PCR). Results: Of the 17,736 genes detected, 851 genes were identified as the DEGs (474 upregulated and 377 downregulated genes) using the false discovery rate (FDR) approach. GSEA revealed that the significantly enriched gene sets that positively correlated with RA were CD40 signaling overactivation, Th1 cytotoxic module, overactivation of the immune response, adaptive immune response, effective vs. memory CD8+ T cells (upregulated), and naïve vs. effective CD8+ T cells (downregulated). Biological process enrichment analysis showed that the DEGs were significantly enriched for signal transduction (P = 3.01 × 10-6), immune response (P = 1.65 × 10-24), and inflammatory response (P = 5.76 × 10-10). Molecule function enrichment analysis revealed that the DEGs were enriched in calcium ion binding (P = 1.26 × 10-5), receptor binding (P = 1.26 × 10-5), and cytokine activity (P = 2.01 × 10-3). Cellular component enrichment analysis revealed that the DEGs were significantly enriched in the plasma membrane (P = 1.91 × 10-31), an integral component of the membrane (P = 7.39 × 10-13), and extracellular region (P = 7.63 × 10-11). The KEGG pathway analysis showed that the DEGs were enriched in the cytokine-cytokine receptor interaction (P = 3.05 × 10-17), chemokine signaling (P = 3.50 × 10-7), T-cell receptor signaling (P = 5.17 × 10-4), and RA (P = 5.17 × 10-4) pathways. We confirmed that RA was correlated with the upregulation of the PPI network hub genes, such as CXCL13, CXCL6, CCR5, CXCR5, CCR2, CXCL3, and CXCL10, and the downregulation of the PPI network hub gene such as SSTR1. Conclusion: This study identified and validated the DEGs in the synovial tissue samples of patients with RA, which highlighted the activity of a subset of chemokine genes, thereby providing novel insights into the molecular mechanisms of RA pathogenesis and identifying potential diagnostic and therapeutic targets for RA.

18.
Front Immunol ; 13: 863703, 2022.
Article in English | MEDLINE | ID: mdl-35309322

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease that can cause joint damage and disability. Epigenetic variation, especially DNA methylation, has been shown to be involved in almost all the stages of the pathology of RA, from autoantibody production to various self-effector T cells and the defects of protective T cells that can lead to chronic inflammation and erosion of bones and joints. Given the critical role of T cells in the pathology of RA, the regulatory functions of DNA methylation in T cell biology remain unclear. In this review, we elaborate on the relationship between RA pathogenesis and DNA methylation in the context of different T cell populations. We summarize the relevant methylation events in T cell development, differentiation, and T cell-related genes in disease prediction and drug efficacy. Understanding the epigenetic regulation of T cells has the potential to profoundly translate preclinical results into clinical practice and provide a framework for the development of novel, individualized RA therapeutics.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/therapy , DNA Methylation , Epigenesis, Genetic , Humans , T-Lymphocytes/pathology
19.
Front Genet ; 12: 769699, 2021.
Article in English | MEDLINE | ID: mdl-34880906

ABSTRACT

To investigate refractory hypercholesterolemia, a female patient and relatives were subjected to whole-genome sequencing. The proband was found to have compound heterozygous substitutions p. Arg446Gln and c.1118+3G>T in ABCG5, one of two genes causing sitosterolemia. When tracing these variants in the full pedigree, all maternally related heterozygotes for the intronic ABCG5 variant exhibited large platelets (over 30 fl), which segregated in an autosomal dominant manner, consistent with macrothrombocytopenia, or large platelet syndrome which may be associated with a bleeding tendency. In vitro cell-line and in vivo rat model experiments supported a pathogenic role for the variant and the macrothrombocytopenia was recapitulated in heterozygous rats and human cell lines exhibiting that single variant. Ezetimibe treatment successfully ameliorated all the symptoms of the proband with sitosterolemia and resolved the macrothrombocytopenia of the treated heterozygote relatives. Subsequently, in follow up these observations, platelet size, and size distribution were measured in 1,180 individuals; 30 were found to be clinically abnormal, three of which carried a single known pathogenic ABCG5 variant (p.Arg446Ter) and two individuals carried novel ABCG5 variants of uncertain significance. In this study, we discovered that identification of large platelets and therefore a possible macrothrombocytopenia diagnosis could easily be inadvertently missed in clinical practice due to variable instrument settings. These findings suggest that ABCG5 heterozygosity may cause macrothrombocytopenia, that Ezetimibe treatment may resolve macrothrombocytopenia in such individuals, and that increased attention to platelet size on complete blood counts can aid in the identification of candidates for ABCG5 genetic testing who might benefit from Ezetimibe treatment.

20.
Front Immunol ; 12: 790122, 2021.
Article in English | MEDLINE | ID: mdl-34899757

ABSTRACT

Rheumatoid arthritis is an autoimmune disease that exhibits significant clinical heterogeneity. There are various treatments for rheumatoid arthritis, including disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and inflammatory cytokine inhibitors (ICI), typically associated with differentiated clinical effects and characteristics. Personalized responsiveness is observed to the standard treatment due to the pathophysiological heterogeneity in rheumatoid arthritis, resulting in an overall poor prognosis. Understanding the role of individual variation in cellular and molecular mechanisms related to rheumatoid arthritis will considerably improve clinical care and patient outcomes. In this review, we discuss the source of pathophysiological heterogeneity derived from genetic, molecular, and cellular heterogeneity and their possible impact on precision medicine and personalized treatment of rheumatoid arthritis. We provide emphasized description of the heterogeneity derived from mast cells, monocyte cell, macrophage fibroblast-like synoviocytes and, interactions within immune cells and with inflammatory cytokines, as well as the potential as a new therapeutic target to develop a novel treatment approach. Finally, we summarize the latest clinical trials of treatment options for rheumatoid arthritis and provide a suggestive framework for implementing preclinical and clinical experimental results into clinical practice.


Subject(s)
Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Genetic Heterogeneity , Immune System/immunology , Synovial Membrane/immunology , Animals , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Cytokines/genetics , Cytokines/metabolism , Genetic Predisposition to Disease , Humans , Immune System/drug effects , Immune System/metabolism , Inflammation Mediators/metabolism , Phenotype , Signal Transduction , Synovial Membrane/drug effects , Synovial Membrane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...