Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37553182

ABSTRACT

BACKGROUND: The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS: Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS: We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS: The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Adenosine , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Immunotherapy/methods , Tumor Microenvironment
2.
Mol Cancer Ther ; 22(5): 679-690, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36888921

ABSTRACT

Osimertinib is a third-generation, irreversible, oral EGFR tyrosine kinase inhibitor (TKI) recommended as first-line treatment for patients with locally advanced/metastatic EGFR mutation-positive (EGFRm) non-small cell lung cancer (NSCLC). However, MET amplification/overexpression is a common acquired osimertinib resistance mechanism. Savolitinib is an oral, potent, and highly selective MET-TKI; preliminary data suggest that combining osimertinib with savolitinib may overcome MET-driven resistance. A patient-derived xenograft (PDX) mouse model with EGFRm, MET-amplified NSCLC was tested with a fixed osimertinib dose [10 mg/kg for exposures equivalent to (≈)80 mg], combined with doses of savolitinib (0-15 mg/kg, ≈0-600 mg once daily), both with 1-aminobenzotriazole (to better match clinical half-life). After 20 days of oral dosing, samples were taken at various time points to follow the time course of drug exposure in addition to phosphorylated MET and EGFR (pMET and pEGFR) change. Population pharmacokinetics, savolitinib concentration versus percentage inhibition from baseline in pMET, and the relationship between pMET and tumor growth inhibition (TGI) were also modeled. As single agents, savolitinib (15 mg/kg) showed significant antitumor activity, reaching ∼84% TGI, and osimertinib (10 mg/kg) showed no significant antitumor activity (34% TGI, P > 0.05 vs. vehicle). Upon combination, at a fixed dose of osimertinib, significant savolitinib dose-related antitumor activity was shown, ranging from 81% TGI (0.3 mg/kg) to 84% tumor regression (15 mg/kg). Pharmacokinetic-pharmacodynamic modeling showed that the maximum inhibition of both pEGFR and pMET increased with increasing savolitinib doses. Savolitinib demonstrated exposure-related combination antitumor activity when combined with osimertinib in the EGFRm MET-amplified NSCLC PDX model.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Aniline Compounds/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease Models, Animal , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Mol Cancer Ther ; 22(5): 630-645, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36912782

ABSTRACT

Antitumor immunity can be hampered by immunosuppressive mechanisms in the tumor microenvironment, including recruitment of arginase (ARG) expressing myeloid cells that deplete l-arginine essential for optimal T-cell and natural killer cell function. Hence, ARG inhibition can reverse immunosuppression enhancing antitumor immunity. We describe AZD0011, a novel peptidic boronic acid prodrug to deliver an orally available, highly potent, ARG inhibitor payload (AZD0011-PL). We demonstrate that AZD0011-PL is unable to permeate cells, suggesting that this compound will only inhibit extracellular ARG. In vivo, AZD0011 monotherapy leads to arginine increases, immune cell activation, and tumor growth inhibition in various syngeneic models. Antitumor responses increase when AZD0011 is combined with anti-PD-L1 treatment, correlating with increases in multiple tumor immune cell populations. We demonstrate a novel triple combination of AZD0011, anti-PD-L1, and anti-NKG2A, and combination benefits with type I IFN inducers, including polyI:C and radiotherapy. Our preclinical data demonstrate AZD0011's ability to reverse tumor immunosuppression and enhance immune stimulation and antitumor responses with diverse combination partners providing potential strategies to increase immuno-oncology therapies clinically.


Subject(s)
Arginase , T-Lymphocytes , Humans , Cell Line, Tumor , Immunosuppression Therapy , Immune Tolerance , Tumor Microenvironment
4.
Mol Pharm ; 19(1): 172-187, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34890209

ABSTRACT

A physiologically based pharmacokinetic model was developed to describe the tissue distribution kinetics of a dendritic nanoparticle and its conjugated active pharmaceutical ingredient (API) in plasma, liver, spleen, and tumors. Tumor growth data from MV-4-11 tumor-bearing mice were incorporated to investigate the exposure/efficacy relationship. The nanoparticle demonstrated improved antitumor activity compared to the conventional API formulation, owing to the extended released API concentrations at the site of action. Model simulations further enabled the identification of critical parameters that influence API exposure in tumors and downstream efficacy outcomes upon nanoparticle administration. The model was utilized to explore a range of dosing schedules and their effect on tumor growth kinetics, demonstrating the improved antitumor activity of nanoparticles with less frequent dosing compared to the same dose of naked APIs in conventional formulations.


Subject(s)
Antineoplastic Agents/administration & dosage , Dendrimers/pharmacokinetics , Nanoparticles/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Female , Humans , Mice , Mice, SCID , Neoplasm Transplantation , Tissue Distribution , Treatment Outcome
5.
Sci Transl Med ; 13(609): eabb3738, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34516823

ABSTRACT

The clinical efficacy of epidermal growth factor receptor (EGFR)­targeted therapy in EGFR-mutant non­small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor (MET) proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent EGFR mutation and MET amplification are historically thought to be codependent on the activation of both oncogenes. Hence, patients whose tumors harbor both alterations are commonly treated with a combination of EGFR and MET tyrosine kinase inhibitors (TKIs). Here, we identify and characterize six patient-derived models of EGFR-mutant, MET-amplified lung cancer that have switched oncogene dependence to rely exclusively on MET activation for survival. We demonstrate in this MET-driven subset of EGFR TKI-refractory cancers that canonical EGFR downstream signaling was governed by MET, even in the presence of sustained mutant EGFR expression and activation. In these models, combined EGFR and MET inhibition did not result in greater efficacy in vitro or in vivo compared to single-agent MET inhibition. We further identified a reduced EGFR:MET mRNA expression stoichiometry as associated with MET oncogene dependence and single-agent MET TKI sensitivity. Tumors from 10 of 11 EGFR inhibitor­resistant EGFR-mutant, MET-amplified patients also exhibited a reduced EGFR:MET mRNA ratio. Our findings reveal that a subset of EGFR-mutant, MET-amplified lung cancers develop dependence on MET activation alone, suggesting that such patients could be treated with a single-agent MET TKI rather than the current standard-of-care EGFR and MET inhibitor combination regimens.


Subject(s)
ErbB Receptors , Lung Neoplasms , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
6.
Commun Biol ; 4(1): 112, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495510

ABSTRACT

Dual Bcl-2/Bcl-xL inhibitors are expected to deliver therapeutic benefit in many haematological and solid malignancies, however, their use is limited by tolerability issues. AZD4320, a potent dual Bcl-2/Bcl-xL inhibitor, has shown good efficacy however had dose limiting cardiovascular toxicity in preclinical species, coupled with challenging physicochemical properties, which prevented its clinical development. Here, we describe the design and development of AZD0466, a drug-dendrimer conjugate, where AZD4320 is chemically conjugated to a PEGylated poly-lysine dendrimer. Mathematical modelling was employed to determine the optimal release rate of the drug from the dendrimer for maximal therapeutic index in terms of preclinical anti-tumour efficacy and cardiovascular tolerability. The optimised candidate is shown to be efficacious and better tolerated in preclinical models compared with AZD4320 alone. The AZD4320-dendrimer conjugate (AZD0466) identified, through mathematical modelling, has resulted in an improved therapeutic index and thus enabled progression of this promising dual Bcl-2/Bcl-xL inhibitor into clinical development.


Subject(s)
Antineoplastic Agents , Dendrimers , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Dendrimers/chemical synthesis , Dendrimers/chemistry , Dendrimers/pharmacokinetics , Dendrimers/therapeutic use , Dogs , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Neoplasms/metabolism , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Rats , Rats, Wistar , Therapeutic Index , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , bcl-X Protein/antagonists & inhibitors
7.
J Immunother Cancer ; 8(2)2020 07.
Article in English | MEDLINE | ID: mdl-32727810

ABSTRACT

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated. METHODS: We report here the development of a small molecule A2AR inhibitor including characterization of binding and inhibition of A2AR function with varying amounts of a stable version of adenosine. Functional activity was tested in both mouse and human T cells and dendritic cells (DCs) in in vitro assays to understand the intrinsic role on each cell type. The role of adenosine and A2AR inhibition was tested in DC differentiation assays as well as co-culture assays to access the cross-priming function of DCs. Syngeneic models were used to assess tumor growth alone and in combination with alphaprogrammed death-ligand 1 (αPD-L1). Immunophenotyping by flow cytometry was performed to examine global immune cell changes upon A2AR inhibition. RESULTS: We provide the first report of AZD4635, a novel small molecule A2AR antagonist which inhibits downstream signaling and increases T cell function as well as a novel mechanism of enhancing antigen presentation by CD103+ DCs. The role of antigen presentation by DCs, particularly CD103+ DCs, is critical to drive antitumor immunity providing rational to combine a priming agent AZD4635 with check point blockade. We find adenosine impairs the maturation and antigen presentation function of CD103+ DCs. We show in multiple syngeneic mouse tumor models that treatment of AZD4635 alone and in combination with αPD-L1 led to decreased tumor volume correlating with enhanced CD103+ function and T cell response. We extend these studies into human DCs to show that adenosine promotes a tolerogenic phenotype that can be reversed with AZD4635 restoring antigen-specific T cell activation. Our results support the novel role of adenosine signaling as an intrinsic negative regulator of CD103+ DCs maturation and priming. We show that potent inhibition of A2AR with AZD4635 reduces tumor burden and enhances antitumor immunity. This unique mechanism of action in CD103+ DCs may contribute to clinical responses as AZD4635 is being evaluated in clinical trials with IMFINZI (durvalumab, αPD-L1) in patients with solid malignancies. CONCLUSION: We provide evidence implicating suppression of adaptive and innate immunity by adenosine as a mechanism for immune evasion by tumors. Inhibition of adenosine signaling through selective small molecule inhibition of A2AR using AZD4635 restores T cell function via an internal mechanism as well as tumor antigen cross-presentation by CD103+ DCs resulting in antitumor immunity.


Subject(s)
Antigens, CD/metabolism , Antineoplastic Agents, Immunological/therapeutic use , Dendritic Cells/immunology , Integrin alpha Chains/metabolism , Neoplasms/immunology , Receptor, Adenosine A2A/metabolism , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Female , Humans , Male , Signal Transduction
8.
J Immunother Cancer ; 8(1)2020 05.
Article in English | MEDLINE | ID: mdl-32409420

ABSTRACT

BACKGROUND: PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM. METHODS: Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo. RESULTS: Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM. CONCLUSIONS: Our data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine Triphosphate/metabolism , Adenosine/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Multiple Myeloma/pathology , Receptor, Adenosine A2A/chemistry , Animals , Female , Humans , Mice , Mice, Inbred C57BL , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/metabolism , Prognosis , Receptor, Adenosine A2A/metabolism , Survival Rate
9.
Blood ; 133(6): 566-575, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30498064

ABSTRACT

There is a pressing need for more effective therapies to treat patients with T-cell lymphomas (TCLs), including first-line approaches that increase the response rate to cyclophosphamide, adriamycin, vincristine, and prednisone (CHOP) chemotherapy. We characterized the mitochondrial apoptosis pathway in cell lines and patient-derived xenograft (PDX) models of TCL and assessed the in vitro efficacy of BH3 mimetics, including the BCL2 inhibitor venetoclax, the BCL2/BCL-xL inhibitor navitoclax, and the novel MCL1 inhibitor AZD5991. The abundance of antiapoptotic BCL2 family members based on immunoblotting or RNA transcript levels correlated poorly with the activity of BH3 mimetics. In contrast, the functional approach BH3 profiling reliably predicted sensitivity to BH3 mimetics in vitro and in vivo. We used BH3 profiling to select TCL PDX that were dependent on MCL1. Mice xenografted with these PDX and treated with AZD5991 had markedly improved survival. The combination of AZD5991 and CHOP achieved synergy based on survival improvement beyond a mathematical "sum of benefits" model. Thus, MCL1 inhibition is a promising strategy as both a single agent and in combination with chemotherapy for patients with TCL and functional dependence on MCL1.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Lymphoma, T-Cell/drug therapy , Molecular Targeted Therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Peptide Fragments/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Cyclophosphamide/administration & dosage , Doxorubicin/administration & dosage , Humans , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology , Macrocyclic Compounds/administration & dosage , Mice , Mice, Inbred NOD , Mice, SCID , Prednisone/administration & dosage , Tumor Cells, Cultured , Vincristine/administration & dosage , Xenograft Model Antitumor Assays
10.
Nat Commun ; 9(1): 5341, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559424

ABSTRACT

Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing induction of apoptosis in many cancers. High expression of Mcl-1 causes tumorigenesis and resistance to anticancer therapies highlighting the potential of Mcl-1 inhibitors as anticancer drugs. Here, we describe AZD5991, a rationally designed macrocyclic molecule with high selectivity and affinity for Mcl-1 currently in clinical development. Our studies demonstrate that AZD5991 binds directly to Mcl-1 and induces rapid apoptosis in cancer cells, most notably myeloma and acute myeloid leukemia, by activating the Bak-dependent mitochondrial apoptotic pathway. AZD5991 shows potent antitumor activity in vivo with complete tumor regression in several models of multiple myeloma and acute myeloid leukemia after a single tolerated dose as monotherapy or in combination with bortezomib or venetoclax. Based on these promising data, a Phase I clinical trial has been launched for evaluation of AZD5991 in patients with hematological malignancies (NCT03218683).


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Multiple Myeloma/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Animals , Bortezomib/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Mice, SCID , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Rats , Rats, Nude , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
11.
Clin Cancer Res ; 23(6): 1531-1541, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27663586

ABSTRACT

Purpose: The emergence of EGFR inhibitors such as gefitinib, erlotinib, and osimertinib has provided novel treatment opportunities in EGFR-driven non-small cell lung cancer (NSCLC). However, most patients with EGFR-driven cancers treated with these inhibitors eventually relapse. Recent efforts have identified the canonical Wnt pathway as a mechanism of protection from EGFR inhibition and that inhibiting tankyrase, a key player in this pathway, is a potential therapeutic strategy for the treatment of EGFR-driven tumors.Experimental Design: We performed a preclinical evaluation of tankyrase inhibitor AZ1366 in combination with multiple EGFR-inhibitors across NSCLC lines, characterizing its antitumor activity, impingement on canonical Wnt signaling, and effects on gene expression. We performed pharmacokinetic and pharmacodynamic profiling of AZ1366 in mice and evaluated its therapeutic activity in an orthotopic NSCLC model.Results: In combination with EGFR inhibitors, AZ1366 synergistically suppressed proliferation of multiple NSCLC lines and amplified global transcriptional changes brought about by EGFR inhibition. Its ability to work synergistically with EGFR inhibition coincided with its ability to modulate the canonical Wnt pathway. Pharmacokinetic and pharmacodynamic profiling of AZ1366-treated orthotopic tumors demonstrated clinically relevant serum drug levels and intratumoral target inhibition. Finally, coadministration of an EGFR inhibitor and AZ1366 provided better tumor control and improved survival for Wnt-responsive lung cancers in an orthotopic mouse model.Conclusions: Tankyrase inhibition is a potent route of tumor control in EGFR-dependent NSCLC with confirmed dependence on canonical Wnt signaling. These data strongly support further evaluation of tankyrase inhibition as a cotreatment strategy with EGFR inhibition in an identifiable subset of EGFR-driven NSCLC. Clin Cancer Res; 23(6); 1531-41. ©2016 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Enzyme Inhibitors/administration & dosage , ErbB Receptors/antagonists & inhibitors , Tankyrases/antagonists & inhibitors , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Gefitinib , Humans , Mice , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Quinazolines/administration & dosage , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays
12.
Oncotarget ; 7(36): 57651-57670, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27472392

ABSTRACT

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC. In vitro, savolitinib inhibits MET phosphorylation with nanomolar potency, which correlates with blockade of PI3K/AKT and MAPK signaling as well as MYC down-regulation. In vivo, savolitinib causes inhibition of these pathways and significantly decreases growth of MET-dependent xenografts. To understand resistance mechanisms, we generated savolitinib resistance in MET-amplified NSCLC cell lines and analyzed individual clones. We found that upregulation of MYC and constitutive mTOR pathway activation is a conserved feature of resistant clones that can be overcome by knockdown of MYC or dual mTORC1/2 inhibition. Lastly, we demonstrate that mechanisms of resistance are heterogeneous, arising via a switch to EGFR dependence or by a requirement for PIM signaling. This work demonstrates the efficacy of savolitinib in NSCLC and characterizes acquired resistance, identifying both known and novel mechanisms that may inform combination strategies in the clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins c-myc/metabolism , Pyrazines/chemistry , TOR Serine-Threonine Kinases/metabolism , Triazines/chemistry , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Survival , Down-Regulation , ErbB Receptors/metabolism , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-met/metabolism
13.
Oncotarget ; 7(19): 28273-85, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27070088

ABSTRACT

BACKGROUND: Dysregulation of the canonical Wnt signaling pathway has been implicated in colorectal cancer (CRC) development as well as incipient stages of malignant transformation. In this study, we investigated the antitumor effects of AZ1366 (a novel tankyrase inhibitor) as a single agent and in combination with irinotecan in our patient derived CRC explant xenograft models. RESULTS: Six out of 18 CRC explants displayed a significant growth reduction to AZ1366. There was one CRC explant (CRC040) that reached the threshold of sensitivity (TGII ≤ 20%) in this study. In addition, the combination of AZ1366 + irinotecan demonstrated efficacy in 4 out of 18 CRC explants. Treatment effects on the WNT pathway revealed that tankyrase inhibition was ineffective at reducing WNT dependent signaling. However, the anti-tumor effects observed in this study were likely a result of alternative tankyrase effects whereby tankyrase inhibition reduced NuMA levels. MATERIALS AND METHODS: Eighteen CRC explants were treated with AZ1366 single agent or in combination for 28 days and treatment responses were assessed. Pharmacokinetic (AZ1366 drug concentrations) and pharmacodynamic effects (Axin2 levels) were investigated over 48 hours. Immunohistochemistry of nuclear ß-catenin levels as well as western blot was employed to examine the treatment effects on the WNT pathway as well as NuMA. CONCLUSIONS: Combination AZ1366 and irinotecan achieved greater anti-tumor effects compared to monotherapy. Activity was limited to CRC explants that displayed irinotecan resistance and increased protein levels of tankyrase and NuMA.


Subject(s)
Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Tankyrases/antagonists & inhibitors , Adult , Aged , Animals , Axin Protein/biosynthesis , Axin Protein/drug effects , Camptothecin/pharmacology , Colorectal Neoplasms/enzymology , Female , Humans , Irinotecan , Male , Mice , Mice, Nude , Middle Aged , Xenograft Model Antitumor Assays
14.
Clin Cancer Res ; 21(12): 2811-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25779944

ABSTRACT

PURPOSE: Papillary renal cell carcinoma (PRCC) is the second most common cancer of the kidney and carries a poor prognosis for patients with nonlocalized disease. The HGF receptor MET plays a central role in PRCC and aberrations, either through mutation, copy number gain, or trisomy of chromosome 7 occurring in the majority of cases. The development of effective therapies in PRCC has been hampered in part by a lack of available preclinical models. We determined the pharmacodynamic and antitumor response of the selective MET inhibitor AZD6094 in two PRCC patient-derived xenograft (PDX) models. EXPERIMENTAL DESIGN: Two PRCC PDX models were identified and MET mutation status and copy number determined. Pharmacodynamic and antitumor activity of AZD6094 was tested using a dose response up to 25 mg/kg daily, representing clinically achievable exposures, and compared with the activity of the RCC standard-of-care sunitinib (in RCC43b) or the multikinase inhibitor crizotinib (in RCC47). RESULTS: AZD6094 treatment resulted in tumor regressions, whereas sunitinib or crizotinib resulted in unsustained growth inhibition. Pharmacodynamic analysis of tumors revealed that AZD6094 could robustly suppress pMET and the duration of target inhibition was dose related. AZD6094 inhibited multiple signaling nodes, including MAPK, PI3K, and EGFR. Finally, at doses that induced tumor regression, AZD6094 resulted in a dose- and time-dependent induction of cleaved PARP, a marker of cell death. CONCLUSIONS: Data presented provide the first report testing therapeutics in preclinical in vivo models of PRCC and support the clinical development of AZD6094 in this indication.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazines/pharmacology , Triazines/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Crizotinib , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Indoles/pharmacology , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-met/genetics , Pyrazines/administration & dosage , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Sunitinib , Triazines/administration & dosage , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
15.
PLoS One ; 9(10): e108371, 2014.
Article in English | MEDLINE | ID: mdl-25289887

ABSTRACT

Dinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure. This was further underscored by kinetics of dinaciclib-induced downregulation of the antiapoptotic BCL2 family member MCL1 and correlation of sensitivity with the MCL1-to-BCL-xL mRNA ratio or MCL1 amplification in solid tumor models in vitro and in vivo. This MCL1-dependent apoptotic mechanism was additionally supported by synergy with the BCL2, BCL-xL and BCL-w inhibitor navitoclax (ABT-263). These results provide the rationale for investigating MCL1 and BCL-xL as predictive biomarkers for dinaciclib antitumor response and testing combinations with BCL2 family member inhibitors.


Subject(s)
Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Pyridinium Compounds/pharmacology , bcl-X Protein/metabolism , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cyclic N-Oxides , Disease Models, Animal , Diterpenes/pharmacology , Drug Resistance, Neoplasm/genetics , Drug Synergism , Epoxy Compounds/pharmacology , Female , Gene Dosage , Humans , Indolizines , Male , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Neoplasms/genetics , Phenanthrenes/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays , bcl-X Protein/genetics
16.
Proc Natl Acad Sci U S A ; 110(50): 20224-9, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24277854

ABSTRACT

Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion. This effort led to the discovery of LGK974, a potent and specific small-molecule Porcupine (PORCN) inhibitor. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of Wnt ligands, a necessary step in the processing of Wnt ligand secretion. We show that LGK974 potently inhibits Wnt signaling in vitro and in vivo, including reduction of the Wnt-dependent LRP6 phosphorylation and the expression of Wnt target genes, such as AXIN2. LGK974 is potent and efficacious in multiple tumor models at well-tolerated doses in vivo, including murine and rat mechanistic breast cancer models driven by MMTV-Wnt1 and a human head and neck squamous cell carcinoma model (HN30). We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide both a strategy and tools for targeting Wnt-driven cancers through the inhibition of PORCN.


Subject(s)
Membrane Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Pyrazines/pharmacology , Pyridines/pharmacology , Wnt Signaling Pathway/drug effects , Acyltransferases , Animals , Axin Protein/antagonists & inhibitors , Blotting, Western , Cell Line, Tumor , Cloning, Molecular , High-Throughput Screening Assays , Humans , Mice , Mutagenesis , Phosphorylation/drug effects , Pyrazines/therapeutic use , Pyridines/therapeutic use , Radioligand Assay , Rats , Receptors, Notch/genetics , Reverse Transcriptase Polymerase Chain Reaction
17.
Mol Cancer Ther ; 12(8): 1442-52, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23699655

ABSTRACT

Inhibition of the DNA damage checkpoint kinase WEE1 potentiates genotoxic chemotherapies by abrogating cell-cycle arrest and proper DNA repair. However, WEE1 is also essential for unperturbed cell division in the absence of extrinsic insult. Here, we investigate the anticancer potential of a WEE1 inhibitor, independent of chemotherapy, and explore a possible cellular context underlying sensitivity to WEE1 inhibition. We show that MK-1775, a potent and selective ATP-competitive inhibitor of WEE1, is cytotoxic across a broad panel of tumor cell lines and induces DNA double-strand breaks. MK-1775-induced DNA damage occurs without added chemotherapy or radiation in S-phase cells and relies on active DNA replication. At tolerated doses, MK-1775 treatment leads to xenograft tumor growth inhibition or regression. To begin addressing potential response markers for MK-1775 monotherapy, we focused on PKMYT1, a kinase functionally related to WEE1. Knockdown of PKMYT1 lowers the EC(50) of MK-1775 by five-fold but has no effect on the cell-based response to other cytotoxic drugs. In addition, knockdown of PKMYT1 increases markers of DNA damage, γH2AX and pCHK1(S345), induced by MK-1775. In a post hoc analysis of 305 cell lines treated with MK-1775, we found that expression of PKMYT1 was below average in 73% of the 33 most sensitive cell lines. Our findings provide rationale for WEE1 inhibition as a potent anticancer therapy independent of a genotoxic partner and suggest that low PKMYT1 expression could serve as an enrichment biomarker for MK-1775 sensitivity.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Cycle Proteins/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Female , Gene Knockdown Techniques , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Pyrimidinones , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
18.
Proc Natl Acad Sci U S A ; 107(35): 15473-8, 2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20713706

ABSTRACT

Disregulated Wnt/beta-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins. Using a phage-display library, we identified anti-LRP6 antibodies that either inhibit or enhance Wnt signaling. Two classes of LRP6 antagonistic antibodies were discovered: one class specifically inhibits Wnt proteins represented by Wnt1, whereas the second class specifically inhibits Wnt proteins represented by Wnt3a. Epitope-mapping experiments indicated that Wnt1 class-specific antibodies bind to the first propeller and Wnt3a class-specific antibodies bind to the third propeller of LRP6, suggesting that Wnt1- and Wnt3a-class proteins interact with distinct LRP6 propeller domains. This conclusion is further supported by the structural functional analysis of LRP5/6 and the finding that the Wnt antagonist Sclerostin interacts with the first propeller of LRP5/6 and preferentially inhibits the Wnt1-class proteins. We also show that Wnt1 or Wnt3a class-specific anti-LRP6 antibodies specifically block growth of MMTV-Wnt1 or MMTV-Wnt3 xenografts in vivo. Therapeutic application of these antibodies could be limited without knowing the type of Wnt proteins expressed in cancers. This is further complicated by our finding that bivalent LRP6 antibodies sensitize cells to the nonblocked class of Wnt proteins. The generation of a biparatopic LRP6 antibody blocks both Wnt1- and Wnt3a-mediated signaling without showing agonistic activity. Our studies provide insights into Wnt-induced LRP5/6 activation and show the potential utility of LRP6 antibodies in Wnt-driven cancer.


Subject(s)
Antibodies/pharmacology , LDL-Receptor Related Proteins/immunology , Ligands , Wnt Proteins/metabolism , Animals , Antibodies/immunology , Cell Line , Cell Transformation, Viral , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Immunoblotting , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-6 , Mammary Tumor Virus, Mouse/genetics , Mice , Mice, Nude , Neoplasms, Experimental/pathology , Neoplasms, Experimental/prevention & control , Protein Binding/drug effects , Signal Transduction/drug effects , Tumor Burden/drug effects , Wnt Proteins/genetics , Wnt1 Protein/genetics , Wnt1 Protein/metabolism , Wnt3 Protein , Wnt3A Protein , Xenograft Model Antitumor Assays , beta Catenin/genetics , beta Catenin/metabolism
19.
Mol Endocrinol ; 22(5): 1213-25, 2008 May.
Article in English | MEDLINE | ID: mdl-18258685

ABSTRACT

IGFs are required for normal prenatal and postnatal growth. Although actions of IGFs can be modulated by a family of IGF-binding proteins (IGFBPs) in vitro, these studies have identified a complicated pattern of stimulatory and inhibitory IGFBP effects, so that understanding relevant aspects of IGFBP action in vivo has been limited. Here we have produced a null mutation of one specific IGFBP, IGFBP-4, which is coexpressed with IGF-II early in development. Surprisingly, mutation of IGFBP-4, believed from in vitro studies to be exclusively inhibitory, leads to a prenatal growth deficit that is apparent from the time that the IGF-II growth deficit first arises, which strongly suggests that IGFBP-4 is required for optimal IGF-II-promoted growth during fetal development. Mice encoding a mutant IGFBP-4 protease (pregnancy-associated plasma protein-A), which facilitates IGF-II release from an inactive IGF-II/IGFBP-4 complex in vitro, are even smaller than IGFBP-4 mutant mice. However, the more modest IGFBP-4 growth deficit is completely restored in double IGFBP-4/pregnancy-associated plasma protein-A-deficient mice. Taken together these results indicate not only that IGFBP-4 functions as a local reservoir to optimize IGF-II actions needed for normal embryogenesis, but also establish that IGFBP-4 proteolysis is required to activate most, if not all, IGF-II mediated growth-promoting activity.


Subject(s)
Insulin-Like Growth Factor Binding Protein 4/physiology , Somatomedins/metabolism , Animals , Blotting, Western , Female , Gene Expression Regulation, Developmental , In Situ Hybridization , Insulin-Like Growth Factor Binding Protein 4/genetics , Insulin-Like Growth Factor Binding Protein 4/metabolism , Insulin-Like Growth Factor II/metabolism , Male , Mice , Mice, Inbred Strains , Mice, Knockout , Models, Biological
20.
Endocrinology ; 148(5): 2138-47, 2007 May.
Article in English | MEDLINE | ID: mdl-17255210

ABSTRACT

IGFs (IGF-I and IGF-II) are essential for development, and their bioactivities are tightly regulated by six related IGF-binding proteins (IGFBPs). IGFBP-5 is the most highly conserved binding protein and is expressed in several key developmental lineages as well as in multiple adult tissues including the mammary gland. To explore IGFBP-5 actions in vivo, we produced IGFBP-5 knockout (KO) mice. Whole-body growth, selected organ weights, and body composition were essentially normal in IGFBP-5 KO mice, presumably because of substantial compensation by remaining IGFBP family members. The IGFBP-5 KO mice also exhibited normal mammary gland development and were capable of nursing their pups. We then directly evaluated the proposed role of IGFBP-5 in apoptosis and remodeling of mammary gland during involution. We found that the process of involution after forced weaning was delayed in IGFBP-5 KO mice, with both the appearance of apoptotic cells and the reappearance of adipocytes retarded in mutant mice, compared with controls. We also determined the effects of IGFBP-5 deletion on mammary gland development in pubertal females after ovariectomy and stimulation with estradiol/progesterone. In this paradigm, IGFBP-5 KO mammary glands exhibited enhanced alveolar bud formation consistent with enhanced IGF-I action. These results demonstrate that IGFBP-5, although not essential for normal growth, is required for normal mammary gland involution and can regulate mammary gland morphogenesis in response to hormone stimulation.


Subject(s)
Insulin-Like Growth Factor Binding Protein 5/genetics , Insulin-Like Growth Factor Binding Protein 5/physiology , Lactation/physiology , Mammary Glands, Animal/physiology , Animals , Animals, Suckling , Body Composition/physiology , Estradiol/pharmacology , Gene Expression Regulation, Developmental , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/metabolism , Mammary Glands, Animal/drug effects , Mice , Mice, Knockout , Progesterone/pharmacology , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...