Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Evodevo ; 3(1): 13, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22748136

ABSTRACT

BACKGROUND: Recent studies have challenged the widespread view that the pattern of embryogenesis found in Caenorhabditis elegans (clade 9) is characteristic of nematodes in general. To understand this still largely unexplored landscape of developmental events, we set out to examine more distantly related nematodes in detail for temporospatial differences in pattern formation and cell specification. Members of the genus Plectus (clade 6) seem to be suitable candidates to show variety, with certain idiosyncratic features during early development and the convenient availability of cultivatable species. METHODS: The study was conducted using 4-D lineage analysis, 3-D modeling of developing embryos and laser-induced ablation of individual blastomeres. RESULTS: Detailed cell lineage studies of several Plectus species reveal that pattern formation and cell fate assignment differ markedly from C. elegans. Descendants of the first somatic founder cell S1 (AB) - but not the progeny of other founder cells - demonstrate extremely variable spatial arrangements illustrating that here distinct early cell-cell interactions between invariant partners, as found in C. elegans, cannot take place. Different from C. elegans, in Plectus alternative positional variations among early S1 blastomeres resulting in a 'situs inversus' pattern, nevertheless give rise to adults with normal left-right asymmetries. In addition, laser ablations of early blastomeres uncover inductions between variable cell partners. CONCLUSIONS: Our results suggest that embryonic cell specification in Plectus is not correlated with cell lineage but with position. With this peculiarity, Plectus appears to occupy an intermediate position between basal nematodes displaying a variable early development and the C. elegans-like invariant pattern. We suggest that indeterminate pattern formation associated with late, position-dependent fate assignment represents a plesiomorphic character among nematodes predominant in certain basal clades but lost in derived clades. Thus, the behavior of S1 cells in Plectus can be considered an evolutionary relict in a transition phase between two different developmental strategies.

2.
Evodevo ; 2(1): 18, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21929824

ABSTRACT

BACKGROUND: Nematodes can be subdivided into basal Enoplea (clades 1 and 2) and more derived Chromadorea (clades 3 to 12). Embryogenesis of Caenorhabditis elegans (clade 9) has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades. METHODS: The study was conducted using 4-D microscopy and 3-D modeling of developing embryos. RESULTS: We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs) that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent) to an invariable (lineage-dependent) way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis') appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade Hypsibius dujardini revealed surprising similarities indicating that the presence of POCs is not restricted to nematode embryos. CONCLUSIONS: The pattern of cleavage, spatial arrangement and differentiation of cells diverged dramatically during the history of the phylum Nematoda without corresponding changes in the phenotype. While in all studied representatives the same distinctive developmental steps need to be taken, cell behavior leading to these is not conserved.

3.
Dev Biol ; 334(1): 10-21, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19523940

ABSTRACT

The current picture of embryonic development in nematodes is essentially shaped by Caenorhabditis elegans and its close relatives. As their pattern of embryogenesis is rather similar, it is often considered to be representative for the taxon Nematoda as a whole. Here we give for the first time a comprehensive description of embryonic development in an ancestrally diverged nematode. Romanomermis culicivorax differs strikingly from C. elegans with respect to cell division pattern, spatial arrangement of blastomeres and tissue formation. Our study reveals a number of unexpected phenomena. These include (i) unique polar interphase microtubule caps forming in early blastomeres destined to undergo asymmetric cleavages, suggesting the presence of a so far undescribed MTOC; (ii) embryonic cell lineages of reduced complexity with predominantly monoclonal sublineages, generating just a single tissue type; (iii) construction of major parts of the body from duplicating building blocks consisting of rings of cells, a pattern showing some resemblance to segmentation; (iv) prominent differences in cell fate assignment which can be best explained with a global shift affecting all somatic founder cells. In summary, our data indicate that during nematode evolution massive alterations in the developmental program took place of how to generate a juvenile.


Subject(s)
Embryo, Nonmammalian/metabolism , Embryonic Development/physiology , Nematoda/embryology , Animals , Body Patterning , Cell Differentiation , Cell Lineage , Cells, Cultured , Embryo, Nonmammalian/cytology , Evolution, Molecular , Nematoda/cytology , Phylogeny , Species Specificity
4.
Int J Dev Biol ; 53(4): 507-15, 2009.
Article in English | MEDLINE | ID: mdl-19378252

ABSTRACT

In order to evaluate the evolutionary preservation of developmental programs during nematode embryogenesis, we searched for close relatives of the model system Caenorhabditis elegans with deviant patterns. The parthenogenetically reproducing species Diploscapter coronatus shows prominent differences to C. elegans. While in the 2-cell stage of C. elegans a rotation of the nuclear/centrosome complex is found only in the posterior P1 cell, in D. coronatus cell isolation indicates that rotation takes place in a cell-autonomous manner in both blastomeres, resulting in a linear 4-cell array. In C. elegans, the ABp cell becomes different from its ABa sister via a germline-induced induction. In D. coronatus, AB daughters do not touch the germline but nevertheless execute different fates, suggesting a cell-autonomous mechanism or signaling over distance. Laser ablation experiments revealed that active migration of the EMS cell is required to transform the linearly ordered blastomeres into a 3-dimensional embryo, and the difference can be most easily explained with a heterochronic shift with respect to cell mobility. In D. coronatus, reversal of cleavage polarity in the germline, typical for C. elegans, is absent. This results in four different transient variants of posterior blastomeres which eventually merge into a single pattern prior to the onset of gastrulation. This merging includes primordial germ cell migrations of variable extent toward the gut precursor cell and suggests a specific cell-cell recognition mechanism. Cell distribution in advanced embryos is essentially indistinguishable between both species.


Subject(s)
Parthenogenesis/physiology , Rhabditoidea/embryology , Aging/physiology , Animals , Cell Lineage , Cell Nucleus , Cell Polarity , Centrosome , Phylogeny , Rhabditoidea/cytology , Rhabditoidea/genetics
5.
Dev Biol ; 315(2): 426-36, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18275948

ABSTRACT

We have begun to analyze the early embryogenesis of Romanomermis culicivorax, an insect-parasitic nematode phylogenetically distant to Caenorhabditis elegans. Development of R. culicivorax differs from C. elegans in many aspects including establishment of polarity, formation of embryonic axes and the pattern of asymmetric cleavages. Here, a polarity reversal in the germline takes place already in P(1) rather than P(2), the dorsal-ventral axis appears to be inverted and gut fate is derived from the AB rather than from the EMS blastomere. So far unique for nematodes is the presence of colored cytoplasm and its segregation into one specific founder cell. Normal development observed after experimentally induced abnormal partitioning of pigment indicates that it is not involved in cell specification. Another typical feature is prominent midbodies (MB). We investigated the role of the MB region in the establishment of asymmetry. After its irradiation the potential for unequal cleavage in somatic and germline cells as well as differential distribution of pigment are lost. This indicates a crucial involvement of this region for spindle orientation, positioning, and cytoplasmic segregation. A scenario is sketched suggesting why and how during evolution the observed differences between R. culicivorax and C. elegans may have evolved.


Subject(s)
Mermithoidea/embryology , Animals , Body Patterning , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Cell Communication , Cell Differentiation , Cell Polarity , Cleavage Stage, Ovum/cytology , Cytoplasm/metabolism , Lasers , Mermithoidea/cytology , Mermithoidea/metabolism , Phylogeny , Pigmentation/radiation effects , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL