Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13856, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879632

ABSTRACT

Floral nectar sugar composition is assumed to reflect the nutritional demands and foraging behaviour of pollinators, but the relative contributions of evolutionary and abiotic factors to nectar sugar composition remain largely unknown across the angiosperms. We compiled a comprehensive dataset on nectar sugar composition for 414 insect-pollinated plant species across central Europe, along with phylogeny, paleoclimate, flower morphology, and pollinator dietary demands, to disentangle their relative effects. We found that phylogeny was strongly related with nectar sucrose content, which increased with the phylogenetic age of plant families, but even more strongly with historic global surface temperature. Nectar sugar composition was also defined by floral morphology, though it was not related to our functional measure of pollinator dietary demands. However, specialist pollinators of current plant-pollinator networks predominantly visited plant species with sucrose-rich nectar. Our results suggest that both physiological mechanisms related to plant water balance and evolutionary effects related to paleoclimatic changes have shaped floral nectar sugar composition during the radiation and specialisation of plants and pollinators. As a consequence, the high velocity of current climate change may affect plant-pollinator interaction networks due to a conflicting combination of immediate physiological responses and phylogenetic conservatism.


Subject(s)
Biological Evolution , Flowers , Phylogeny , Plant Nectar , Pollination , Plant Nectar/metabolism , Plant Nectar/chemistry , Pollination/physiology , Flowers/metabolism , Flowers/physiology , Sugars/metabolism , Sugars/analysis , Animals , Insecta/physiology , Sucrose/metabolism , Europe , Magnoliopsida/physiology , Magnoliopsida/metabolism , Climate Change
2.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569959

ABSTRACT

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Subject(s)
Crops, Agricultural , Environmental Monitoring , Pesticides , Pollination , Animals , Bees/physiology , Pesticides/analysis , Pollen , Malus , Environmental Exposure/statistics & numerical data
3.
Sci Total Environ ; 929: 172239, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38583620

ABSTRACT

There are substantial concerns about impaired honey bee health and colony losses due to several poorly understood factors. We used MALDI profiling (MALDI BeeTyping®) analysis to investigate how some environmental and management factors under field conditions across Europe affected the honey bee haemolymph peptidome (all peptides in the circulatory fluid), as a profile of molecular markers representing the immune status of Apis mellifera. Honey bees were exposed to a range of environmental stressors in 128 agricultural sites across eight European countries in four biogeographic zones, with each country contributing eight sites each for two different cropping systems: oilseed rape (OSR) and apple (APP). The full haemolymph peptide profiles, including the presence and levels of three key immunity markers, namely the antimicrobial peptides (AMPs) Apidaecin, Abaecin and Defensin-1, allowed the honey bee responses to environmental variables to be discriminated by country, crop type and site. When considering just the AMPs, it was not possible to distinguish between countries by the prevalence of each AMP in the samples. However, it was possible to discriminate between countries on the amounts of the AMPs, with the Swedish samples in particular expressing high amounts of all AMPs. A machine learning model was developed to discriminate the haemolymphs of bees from APP and OSR sites. The model was 90.6 % accurate in identifying the crop type from the samples used to build the model. Overall, MALDI BeeTyping® of bee haemolymph represents a promising and cost-effective "blood test" for simultaneously monitoring dozens of peptide markers affected by environmental stressors at the landscape scale, thus providing policymakers with new diagnostic and regulatory tools for monitoring bee health.


Subject(s)
Agriculture , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Bees , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Europe , Hematologic Tests , Hemolymph , Environmental Monitoring/methods
4.
Sci Rep ; 14(1): 3524, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347035

ABSTRACT

Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.


Subject(s)
Bacteria , Pollination , Bees , Animals , Europe
SELECTION OF CITATIONS
SEARCH DETAIL