Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
bioRxiv ; 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38187610

The vagus nerve is proposed to enable communication between the gut microbiome and brain, but activity-based evidence is lacking. Herein, we assess the extent of gut microbial influences on afferent vagal activity and metabolite signaling mechanisms involved. We find that mice reared without microbiota (germ-free, GF) exhibit decreased vagal afferent tone relative to conventionally colonized mice (specific pathogen-free, SPF), which is reversed by colonization with SPF microbiota. Perfusing non-absorbable antibiotics (ABX) into the small intestine of SPF mice, but not GF mice, acutely decreases vagal activity, which is restored upon re-perfusion with bulk lumenal contents or sterile filtrates from the small intestine and cecum of SPF, but not GF, mice. Of several candidates identified by metabolomic profiling, microbiome-dependent short-chain fatty acids, bile acids, and 3-indoxyl sulfate stimulate vagal activity with varied response kinetics, which is blocked by co-perfusion of pharmacological antagonists of FFAR2, TGR5, and TRPA1, respectively, into the small intestine. At the single-unit level, serial perfusion of each metabolite class elicits more singly responsive neurons than dually responsive neurons, suggesting distinct neuronal detection of different microbiome- and macronutrient-dependent metabolites. Finally, microbial metabolite-induced increases in vagal activity correspond with activation of neurons in the nucleus of the solitary tract, which is also blocked by co-administration of their respective receptor antagonists. Results from this study reveal that the gut microbiome regulates select metabolites in the intestinal lumen that differentially activate chemosensory vagal afferent neurons, thereby enabling microbial modulation of interoceptive signals for gut-brain communication. HIGHLIGHTS: Microbiota colonization status modulates afferent vagal nerve activityGut microbes differentially regulate metabolites in the small intestine and cecumSelect microbial metabolites stimulate vagal afferents with varied response kineticsSelect microbial metabolites activate vagal afferent neurons and brainstem neurons via receptor-dependent signaling.

2.
iScience ; 25(8): 104697, 2022 Aug 19.
Article En | MEDLINE | ID: mdl-35880044

Octopamine is essential for egg-laying in Drosophila melanogaster, but the neuronal pathways and receptors by which it regulates visceral muscles in the reproductive tract are not known. We find that the two octopamine receptors that have been previously implicated in egg-laying-OAMB and Octß2R-are expressed in octopaminergic and glutamatergic neurons that project to the reproductive tract, peripheral ppk(+) neurons within the reproductive tract and epithelial cells that line the lumen of the oviducts. Further optogenetic and mutational analyses indicate that octopamine regulates both oviduct contraction and relaxation via Octß2 and OAMB respectively. Interactions with glutamatergic pathways modify the effects of octopamine. Octopaminergic activation of Octß2R on glutamatergic processes provides a possible mechanism by which octopamine initiates lateral oviduct contractions. We speculate that aminergic pathways in the oviposition circuit may be comparable to some of the mechanisms that regulate visceral muscle contractility in mammals.

3.
Neurobiol Dis ; 143: 104977, 2020 09.
Article En | MEDLINE | ID: mdl-32553709

Environmental toxicants have the potential to contribute to the pathophysiology of multiple complex diseases, but the underlying mechanisms remain obscure. One such toxicant is the widely used fungicide ziram, a dithiocarbamate known to have neurotoxic effects and to increase the risk of Parkinson's disease. We have used Drosophila melanogaster as an unbiased discovery tool to identify novel molecular pathways by which ziram may disrupt neuronal function. Consistent with previous results in mammalian cells, we find that ziram increases the probability of synaptic vesicle release by dysregulation of the ubiquitin signaling system. In addition, we find that ziram increases neuronal excitability. Using a combination of live imaging and electrophysiology, we find that ziram increases excitability in both aminergic and glutamatergic neurons. This increased excitability is phenocopied and occluded by null mutant animals of the ether a-go-go (eag) potassium channel. A pharmacological inhibitor of the temperature sensitive hERG (human ether-a-go-go related gene) phenocopies the excitability effects of ziram but only at elevated temperatures. seizure (sei), a fly ortholog of hERG, is thus another candidate target of ziram. Taken together, the eag family of potassium channels emerges as a candidate for mediating some of the toxic effects of ziram. We propose that ziram may contribute to the risk of complex human diseases by blockade of human eag and sei orthologs, such as hERG.


Ether-A-Go-Go Potassium Channels/drug effects , Fungicides, Industrial/toxicity , Neurons/drug effects , Synaptic Vesicles/drug effects , Ziram/toxicity , Animals , Drosophila melanogaster , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Neurons/metabolism , Neurotransmitter Agents/metabolism , Synaptic Vesicles/metabolism
4.
J Neurophysiol ; 117(6): 2163-2178, 2017 06 01.
Article En | MEDLINE | ID: mdl-28228581

Exposure to the microgravity conditions of spaceflight alleviates the load normally imposed by the Earth's gravitational field on the inner ear utricular epithelia. Previous ultrastructural investigations have shown that spaceflight induces an increase in synapse density within hair cells of the rat utricle. However, the utricle exhibits broad physiological heterogeneity across different epithelial regions, and it is unknown whether capabilities for synaptic plasticity generalize to hair cells across its topography. To achieve systematic and broader sampling of the epithelium than was previously conducted, we used immunohistochemistry and volumetric image analyses to quantify synapse distributions across representative utricular regions in specimens from mice exposed to spaceflight (a 15-day mission of the space shuttle Discovery). These measures were compared with similarly sampled Earth-bound controls. Following paraformaldehyde fixation and microdissection, immunohistochemistry was performed on intact specimens to label presynaptic ribbons (anti-CtBP2) and postsynaptic receptor complexes (anti-Shank1A). Synapses were identified as closely apposed pre- and postsynaptic puncta. Epithelia from horizontal semicircular canal cristae served as "within-specimen" controls, whereas utricles and cristae from Earth-bound cohorts served as experimental controls. We found that synapse densities decreased in the medial extrastriolae of microgravity specimens compared with experimental controls, whereas they were unchanged in the striolae and horizontal cristae from the two conditions. These data demonstrate that structural plasticity was topographically localized to the utricular region that encodes very low frequency and static changes in linear acceleration, and illuminates the remarkable capabilities of utricular hair cells for synaptic plasticity in adapting to novel gravitational environments.NEW & NOTEWORTHY Spaceflight imposes a radically different sensory environment from that in which the inner ear utricle normally operates. We investigated synaptic modifications in utricles from mice flown aboard a space shuttle mission. Structural synaptic plasticity was detected in the medial extrastriola, a region associated with encoding static head position, as decreased synapse density. These results are remarkably congruent with a recent report of decreased utricular function in astronauts immediately after returning from the International Space Station.


Hair Cells, Vestibular/cytology , Hair Cells, Vestibular/physiology , Neuronal Plasticity/physiology , Space Flight , Synapses/physiology , Alcohol Oxidoreductases , Animals , Cell Size , Co-Repressor Proteins , Cohort Studies , DNA-Binding Proteins/metabolism , Female , Fixatives , Formaldehyde , Immunohistochemistry , Mice, Inbred C57BL , Microdissection , Microscopy, Confocal , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , Polymers , Tissue Preservation , Weightlessness
5.
Lab Chip ; 16(11): 1962-77, 2016 05 24.
Article En | MEDLINE | ID: mdl-27161943

Biomechanical forces have been demonstrated to influence a plethora of neuronal functions across scales including gene expression, mechano-sensitive ion channels, neurite outgrowth and folding of the cortices in the brain. However, the detailed roles biomechanical forces may play in brain development and disorders has seen limited study, partly due to a lack of effective methods to probe the mechano-biology of the brain. Current techniques to apply biomechanical forces on neurons often suffer from low throughput and poor spatiotemporal resolution. On the other hand, newly developed micro- and nano-technologies can overcome these aforementioned limitations and offer advantages such as lower cost and possibility of non-invasive control of neuronal circuits. This review compares the range of conventional, micro- and nano-technological techniques that have been developed and how they have been or can be used to understand the effect of biomechanical forces on neuronal development and homeostasis.


Brain , Mechanical Phenomena , Microtechnology/methods , Nanotechnology/methods , Animals , Biomechanical Phenomena , Brain/cytology , Brain/metabolism , Brain/physiology , Humans
6.
Neurobiol Aging ; 39: 25-37, 2016 Mar.
Article En | MEDLINE | ID: mdl-26923399

Sporadic Alzheimer's disease (AD) is responsible for 60%-80% of dementia cases, and the most opportune time for preventive intervention is in the earliest stage of its preclinical phase. As traditional mitochondrial energy substrates, ketone bodies (ketones, for short), beta-hydroxybutyrate, and acetoacetate, have been reported to provide symptomatic improvement and disease-modifying activity in epilepsy and neurodegenerative disorders. Recently, ketones are thought as more than just metabolites and also as endogenous factors protecting against AD. In this study, we discovered a novel neuroprotective mechanism of ketones in which they blocked amyloid-ß 42, a pathologic hallmark protein of AD, entry into neurons. The suppression of intracellular amyloid-ß 42 accumulation rescued mitochondrial complex I activity, reduced oxidative stress, and improved synaptic plasticity. Most importantly, we show that peripheral administration of ketones significantly reduced amyloid burden and greatly improved learning and memory ability in a symptomatic mouse model of AD. These observations provide us insights to understand and to establish a novel therapeutic use of ketones in AD prevention.


Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Cognition/drug effects , Ketone Bodies/pharmacology , Ketone Bodies/therapeutic use , Neuroprotective Agents , Peptide Fragments/metabolism , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/therapeutic use , Acetoacetates/pharmacology , Acetoacetates/therapeutic use , Alzheimer Disease/prevention & control , Animals , Depression, Chemical , Disease Models, Animal , Learning/drug effects , Memory/drug effects , Mice, Transgenic , NADH Dehydrogenase/metabolism , Neuronal Plasticity/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Stimulation, Chemical
7.
Exp Neurol ; 275 Pt 1: 232-41, 2016 Jan.
Article En | MEDLINE | ID: mdl-26439313

Multiple populations of aminergic neurons are affected in Parkinson's disease (PD), with serotonergic and noradrenergic loci responsible for some non-motor symptoms. Environmental toxins, such as the dithiocarbamate fungicide ziram, significantly increase the risk of developing PD and the attendant spectrum of both motor and non-motor symptoms. The mechanisms by which ziram and other environmental toxins increase the risk of PD, and the potential effects of these toxins on aminergic neurons, remain unclear. To determine the relative effects of ziram on the synaptic function of aminergic versus non-aminergic neurons, we used live-imaging at the Drosophila melanogaster larval neuromuscular junction (NMJ). In contrast to nearly all other studies of this model synapse, we imaged presynaptic function at both glutamatergic Type Ib and aminergic Type II boutons, the latter responsible for storage and release of octopamine, the invertebrate equivalent of noradrenalin. To quantify the kinetics of exo- and endo-cytosis, we employed an acid-sensitive form of GFP fused to the Drosophila vesicular monoamine transporter (DVMAT-pHluorin). Additional genetic probes were used to visualize intracellular calcium flux (GCaMP) and voltage changes (ArcLight). We find that at glutamatergic Type Ib terminals, exposure to ziram increases exocytosis and inhibits endocytosis. By contrast, at octopaminergic Type II terminals, ziram has no detectable effect on exocytosis and dramatically inhibits endocytosis. In contrast to other reports on the neuronal effects of ziram, these effects do not appear to result from perturbation of the Ubiquitin Proteasome System (UPS) or calcium homeostasis. Unexpectedly, ziram also caused spontaneous and synchronized bursts of calcium influx (measured by GCaMP) and electrical activity (measured by ArcLight) at aminergic Type II, but not glutamatergic Type Ib, nerve terminals. These events are sensitive to both tetrodotoxin and cadmium chloride, and thus appear to represent spontaneous depolarizations followed by calcium influx into Type II terminals. We speculate that the differential effects of ziram on Type II versus Type Ib terminals may be relevant to the specific sensitivity of aminergic neurons in PD, and suggest that changes in neuronal excitability could contribute to the increased risk for PD caused by exposure to ziram. We also suggest that the fly NMJ will be useful to explore the synaptic effects of other pesticides associated with an increased risk of PD.


Dopamine/metabolism , Fungicides, Industrial/pharmacology , Glutamic Acid/metabolism , Neuromuscular Junction/drug effects , Presynaptic Terminals/drug effects , Ziram/pharmacology , Animals , Drosophila melanogaster , Endocytosis/drug effects , Exocytosis/drug effects , Neuromuscular Junction/metabolism , Parkinson Disease , Presynaptic Terminals/metabolism
8.
ACS Nano ; 9(4): 3664-76, 2015.
Article En | MEDLINE | ID: mdl-25801533

Intra- and extracellular signaling play critical roles in cell polarity, ultimately leading to the development of functional cell-cell connections, tissues, and organs. In the brain, pathologically oriented neurons are often the cause for disordered circuits, severely impacting motor function, perception, and memory. Aside from control through gene expression and signaling pathways, it is known that nervous system development can be manipulated by mechanical stimuli (e.g., outgrowth of axons through externally applied forces). The inverse is true as well: intracellular molecular signals can be converted into forces to yield axonal outgrowth. The complete role played by mechanical signals in mediating single-cell polarity, however, remains currently unclear. Here we employ highly parallelized nanomagnets on a chip to exert local mechanical stimuli on cortical neurons, independently of the amount of superparamagnetic nanoparticles taken up by the cells. The chip-based approach was utilized to quantify the effect of nanoparticle-mediated forces on the intracellular cytoskeleton as visualized by the distribution of the microtubule-associated protein tau. While single cortical neurons prefer to assemble tau proteins following poly-L-lysine surface cues, an optimal force range of 4.5-70 pN by the nanomagnets initiated a tau distribution opposed to the pattern cue. In larger cell clusters (groups comprising six or more cells), nanoparticle-mediated forces induced tau repositioning in an observed range of 190-270 pN, and initiation of magnetic field-directed cell displacement was observed at forces above 300 pN. Our findings lay the groundwork for high-resolution mechanical encoding of neural networks in vitro, mechanically driven cell polarization in brain tissues, and neurotherapeutic approaches using functionalized superparamagnetic nanoparticles to potentially restore disordered neural circuits.


Brain/cytology , Cell Engineering/methods , Cell Polarity , Magnets , Nanotechnology/methods , Neurons/cytology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biomechanical Phenomena , Cell Polarity/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , Nanoparticles , Neurons/drug effects , Neurons/metabolism , Protein Transport/drug effects , Rats , tau Proteins/metabolism
9.
Biol Bull ; 227(1): 51-60, 2014 Aug.
Article En | MEDLINE | ID: mdl-25216502

Squid are a significant component of the marine biomass and are a long-established model organism in experimental neurophysiology. The squid statocyst senses linear and angular acceleration and is the best candidate for mediating squid auditory responses, but its physiology and morphology are rarely studied. The statocyst contains mechano-sensitive hair cells that resemble hair cells in the vestibular and auditory systems of other animals. We examined whether squid statocyst hair cells are sensitive to aminoglycosides, a group of antibiotics that are ototoxic in fish, birds, and mammals. To assess aminoglycoside-induced damage, we used immunofluorescent methods to image the major cell types in the statocyst of longfin squid (Doryteuthis pealeii). Statocysts of live, anesthetized squid were injected with either a buffered saline solution or neomycin at concentrations ranging from 0.05 to 3.0 mmol l(-1). The statocyst hair cells of the macula statica princeps were examined 5 h post-treatment. Anti-acetylated tubulin staining showed no morphological differences between the hair cells of saline-injected and non-injected statocysts. The hair cell bundles of the macula statica princeps in aminoglycoside-injected statocysts were either missing or damaged, with the amount of damage being dose-dependent. The proportion of missing hair cells did not increase at the same rate as damaged cells, suggesting that neomycin treatment affects hair cells in a nonlethal manner. These experiments provide a reliable method for imaging squid hair cells. Further, aminoglycosides can be used to induce hair cell damage in a primary sensory area of the statocyst of squid. Such results support further studies on loss of hearing and balance in squid.


Anti-Bacterial Agents/toxicity , Decapodiformes/drug effects , Neomycin/toxicity , Animals , Immunohistochemistry , Neuroepithelial Cells/drug effects
10.
J Neurosci ; 34(20): 6924-37, 2014 May 14.
Article En | MEDLINE | ID: mdl-24828646

Monoamine neurotransmitters are stored in both synaptic vesicles (SVs), which are required for release at the synapse, and large dense-core vesicles (LDCVs), which mediate extrasynaptic release. The contributions of each type of vesicular release to specific behaviors are not known. To address this issue, we generated mutations in the C-terminal trafficking domain of the Drosophila vesicular monoamine transporter (DVMAT), which is required for the vesicular storage of monoamines in both SVs and LDCVs. Deletion of the terminal 23 aa (DVMAT-Δ3) reduced the rate of endocytosis and localization of DVMAT to SVs, but supported localization to LDCVs. An alanine substitution mutation in a tyrosine-based motif (DVMAT-Y600A) also reduced sorting to SVs and showed an endocytic deficit specific to aminergic nerve terminals. Redistribution of DVMAT-Y600A from SV to LDCV fractions was also enhanced in aminergic neurons. To determine how these changes might affect behavior, we expressed DVMAT-Δ3 and DVMAT-Y600A in a dVMAT null genetic background that lacks endogenous dVMAT activity. When expressed ubiquitously, DVMAT-Δ3 showed a specific deficit in female fertility, whereas DVMAT-Y600A rescued behavior similarly to DVMAT-wt. In contrast, when expressed more specifically in octopaminergic neurons, both DVMAT-Δ3 and DVMAT-Y600A failed to rescue female fertility, and DVMAT-Y600A showed deficits in larval locomotion. DVMAT-Y600A also showed more severe dominant effects than either DVMAT-wt or DVMAT-Δ3. We propose that these behavioral deficits result from the redistribution of DVMAT from SVs to LDCVs. By extension, our data suggest that the balance of amine release from SVs versus that from LDCVs is critical for the function of some aminergic circuits.


Behavior, Animal/physiology , Drosophila Proteins/metabolism , Secretory Vesicles/metabolism , Synaptic Vesicles/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Vesicular Monoamine Transport Proteins/genetics
11.
Neuron ; 79(1): 12-5, 2013 Jul 10.
Article En | MEDLINE | ID: mdl-23849195

The understanding of nature is a continuous process that requires the transference of current knowledge to future generations. In this NeuroView, we address the critical issue of training of future scientists, an essential aspect of scientific progress. As an example of the impact training programs can have on shaping future scientists, we focus on the experience of the Grass Laboratory, which provides early career investigators the opportunity to embark on independent research experiences. This uniquely designed program has contributed enormously to fostering the development of neuroscientists in the past 60 years and has left a recognizable mark on 20(th) and 21(st) century neuroscience research.


Neurosciences/education , Research Personnel/education , Research/education , Humans , Laboratories
12.
J Neurosci Methods ; 211(2): 289-95, 2012 Nov 15.
Article En | MEDLINE | ID: mdl-23017979

Brain and primary neuron fractions enriched in synaptic terminals are important tools for neuroscientists in biochemical, neuroanatomical and physiological studies. We describe an annotated updated micro-method for preparing synaptoneurosomes (SNs) enriched in presynaptic and postsynaptic elements. An easy to follow, step-by-step, protocol is provided for making SNs from small amounts of mammalian brain tissue. This includes novel applications for material obtained from human neurosurgical procedures and primary rat neuronal cultures. Our updated method for preparing SNs using smaller amounts of tissue provides a valuable new tool and expands the capabilities of neuroscientists.


Cell Separation/methods , Synaptosomes , Adolescent , Animals , Brain/ultrastructure , Child , Child, Preschool , Humans , Infant , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Neurons/ultrastructure , Rats , Rats, Sprague-Dawley
14.
J Assoc Res Otolaryngol ; 13(1): 39-54, 2012 Feb.
Article En | MEDLINE | ID: mdl-22124891

Using whole-cell patch-clamp recordings, we measured changes in membrane capacitance (ΔC (m)) in two subsets of hair cells from the leopard frog amphibian papilla (AP): the low-frequency (100-500 Hz), rostral hair cells and the high-frequency (500-1200 Hz), caudal hair cells, in order to investigate tonotopic differences in exocytosis. Depolarizations of both rostral and caudal hair cells evoked robust ΔC (m) responses of similar amplitude. However, the calcium dependence of release, i.e., the relationship between ΔC (m) relative to the amount of calcium influx (Q (Ca) (2+)), was found to be linear in rostral hair cells but supra-linear in caudal hair cells. In addition, the higher numbers of vesicles released at caudal hair cell active zones suggests increased temporal precision of caudal hair cell exocytosis. ΔC (m) responses were also obtained in response to sinusoidal stimuli of varying frequency, but neither rostral nor caudal hair cell ΔC (m) revealed any frequency selectivity. While all AP hair cells express both otoferlin and synaptotagmin IV (SytIV), we obtained evidence of a tonotopic distribution of the calcium buffer calretinin which may further increase temporal resolution at the level of the hair cell synapse. Our findings suggest that the low (rostral) and high (caudal) frequency hair cells apply different mechanisms for fine-tuning exocytosis.


Calcium/metabolism , Exocytosis/physiology , Hair Cells, Auditory/cytology , Hair Cells, Auditory/physiology , Pitch Perception/physiology , Animals , Computer Simulation , Electric Capacitance , Membrane Potentials/physiology , Membrane Proteins/metabolism , Models, Neurological , Patch-Clamp Techniques , Rana pipiens , Synaptotagmins/metabolism
15.
J Neurosci ; 30(9): 3157-66, 2010 Mar 03.
Article En | MEDLINE | ID: mdl-20203175

The ubiquitin proteasome system (UPS) plays a crucial role in modulating synaptic physiology both presynaptically and postsynaptically, but the regulatory mechanisms remain obscure. To determine acute effects of proteasome inhibition on neurotransmission, we performed whole-cell voltage-clamp recordings from cultured rodent hippocampal neurons. We find that proteasome inhibitors induce a strikingly fast, severalfold increase in the frequency of both miniature (mini) and spontaneous synaptic currents at excitatory and inhibitory synapses. The lack of change in mini amplitude and kinetics indicates a presynaptic site of action. This effect does not depend on increased levels of presynaptic proteins, previously suggested as proteasomal targets. Furthermore, blockade of the UPS using E1-activating enzyme inhibitors also increases mini frequency, demonstrating that accumulation of ubiquitinated proteins is not required. Overall, these data suggest that the UPS not only orchestrates protein turnover, but also dynamically regulates the activity state of presynaptic proteins, thus crucially shaping synaptic transmission.


Hippocampus/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , Ubiquitination/physiology , Animals , Animals, Newborn , Cells, Cultured , Enzyme Inhibitors/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/cytology , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/drug effects , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Presynaptic Terminals/ultrastructure , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , Protein Transport/physiology , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Reaction Time/physiology , Synaptic Transmission/drug effects , Time Factors , Ubiquitin/antagonists & inhibitors , Ubiquitin/metabolism , Ubiquitination/drug effects
16.
J Comp Neurol ; 517(2): 134-45, 2009 Nov 10.
Article En | MEDLINE | ID: mdl-19731297

Voltage- and calcium-activated potassium channels (BK) are important regulators of neuronal excitability. BK channels seem to be crucial for frequency tuning in nonmammalian vestibular and auditory hair cells. However, there are a paucity of data concerning BK expression in mammalian vestibular hair cells. We therefore investigated the localization of BK channels in mammalian vestibular hair cells, specifically in rat vestibular neuroepithelia. We find that only a subset of hair cells in the utricle and the crista ampullaris express BK channels. BK-positive hair cells are located mainly in the medial striolar region of the utricle, where they constitute at most 12% of hair cells, and in the central zone of the horizontal crista. A majority of BK-positive hair cells are encapsulated by a calretinin-positive calyx defining them as type I cells. The remainder are either type I cells encapsulated by a calretinin-negative calyx or type II hair cells. Surprisingly, the number of BK-positive hair cells in the utricle peaks in juvenile rats and declines in early adulthood. BK channels were not found in vestibular afferent dendrites or somata. Our data indicate that BK channel expression in the mammalian vestibular system differs from the expression pattern in the mammalian auditory and the nonmammalian vestibular system. The molecular diversity of vestibular hair cells indicates a functional diversity that has not yet been fully characterized. The predominance of BK-positive hair cells within the medial striola of juvenile animals suggests that they contribute to a scheme of highly lateralized coding of linear head movements during late development.


Epithelium/metabolism , Hair Cells, Vestibular/metabolism , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Vestibule, Labyrinth/cytology , Age Factors , Animals , Animals, Newborn , Calbindin 2 , Enzyme-Linked Immunosorbent Assay/methods , Rats , Rats, Sprague-Dawley , S100 Calcium Binding Protein G/metabolism , Tubulin/metabolism , Vestibule, Labyrinth/anatomy & histology
17.
PLoS One ; 4(7): e6235, 2009 Jul 20.
Article En | MEDLINE | ID: mdl-19617910

Mouse models with physiological and behavioral differences attributable to differential plasticity of hippocampal and amygdalar neuronal networks are rare. We previously generated ataxin-2 (Atxn2) knockout mice and demonstrated that these animals lacked obvious anatomical abnormalities of the CNS, but showed marked obesity and reduced fertility. We now report on behavioral changes as a consequence of Atxn2-deficiency. Atxn2-deficiency was associated with impaired long-term potentiation (LTP) in the amygdala, but normal LTP in the hippocampus. Intact hippocampal plasticity was associated behaviorally with normal Morris Water maze testing. Impaired amygdala plasticity was associated with reduced cued and contextual fear conditioning. Conditioned taste aversion, however, was normal. In addition, knockout mice showed decreased innate fear in several tests and motor hyperactivity in open cage testing. Our results suggest that Atxn2-deficiency results in a specific set of behavioral and cellular disturbances that include motor hyperactivity and abnormal fear-related behaviors, but intact hippocampal function. This animal model may be useful for the study of anxiety disorders and should encourage studies of anxiety in patients with spinocerebellar ataxia type 2 (SCA2).


Fear , Learning , Nerve Tissue Proteins/physiology , Space Perception , Amygdala/physiology , Animals , Ataxins , Behavior, Animal , Conditioning, Operant , Female , Hippocampus/physiology , Homozygote , Long-Term Potentiation , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics
18.
Hum Mol Genet ; 18(15): 2875-88, 2009 Aug 01.
Article En | MEDLINE | ID: mdl-19433415

DNA methylation is a major epigenetic factor regulating genome reprogramming, cell differentiation and developmental gene expression. To understand the role of DNA methylation in central nervous system (CNS) neurons, we generated conditional Dnmt1 mutant mice that possess approximately 90% hypomethylated cortical and hippocampal cells in the dorsal forebrain from E13.5 on. The mutant mice were viable with a normal lifespan, but displayed severe neuronal cell death between E14.5 and three weeks postnatally. Accompanied with the striking cortical and hippocampal degeneration, adult mutant mice exhibited neurobehavioral defects in learning and memory in adulthood. Unexpectedly, a fraction of Dnmt1(-/-) cortical neurons survived throughout postnatal development, so that the residual cortex in mutant mice contained 20-30% of hypomethylated neurons across the lifespan. Hypomethylated excitatory neurons exhibited multiple defects in postnatal maturation including abnormal dendritic arborization and impaired neuronal excitability. The mutant phenotypes are coupled with deregulation of those genes involved in neuronal layer-specification, cell death and the function of ion channels. Our results suggest that DNA methylation, through its role in modulating neuronal gene expression, plays multiple roles in regulating cell survival and neuronal maturation in the CNS.


Cerebral Cortex/physiology , DNA Methylation , Neurogenesis , Neurons/physiology , Prosencephalon/physiology , Animals , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Hippocampus/embryology , Hippocampus/growth & development , Hippocampus/physiology , Mice , Mice, Knockout , Prosencephalon/embryology , Prosencephalon/growth & development
20.
PLoS One ; 3(6): e2334, 2008 Jun 04.
Article En | MEDLINE | ID: mdl-18523548

ALS8 is caused by a dominant mutation in an evolutionarily conserved protein, VAPB (vesicle-associated membrane protein (VAMP)-associated membrane protein B)/ALS8). We have established a fly model of ALS8 using the corresponding mutation in Drosophila VAPB (dVAP33A) and examined the effects of this mutation on VAP function using genetic and morphological analyses. By simultaneously assessing the effects of VAP(wt) and VAP(P58S) on synaptic morphology and structure, we demonstrate that the phenotypes produced by neuronal expression of VAP(P58S) resemble VAP loss of function mutants and are opposite those of VAP overexpression, suggesting that VAP(P58S) may function as a dominant negative. This is brought about by aggregation of VAP(P58S) and recruitment of wild type VAP into these aggregates. Importantly, we also demonstrate that the ALS8 mutation in dVAP33A interferes with BMP signaling pathways at the neuromuscular junction, identifying a new mechanism underlying pathogenesis of ALS8. Furthermore, we show that mutant dVAP33A can serve as a powerful tool to identify genetic modifiers of VAPB. This new fly model of ALS, with its robust pathological phenotypes, should for the first time allow the power of unbiased screens in Drosophila to be applied to study of motor neuron diseases.


Amyotrophic Lateral Sclerosis/genetics , Disease Models, Animal , Drosophila Proteins/genetics , Genes, Dominant , Membrane Proteins/genetics , Mutation , Animals , Bone Morphogenetic Proteins/metabolism , Carrier Proteins , Drosophila , Humans , Signal Transduction , Transgenes
...