Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
New Phytol ; 243(2): 738-752, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38822654

ABSTRACT

In the early 1900s, Erwin Baur established Antirrhinum majus as a model system, identifying and characterising numerous flower colour variants. This included Picturatum/Eluta, which restricts the accumulation of magenta anthocyanin pigments, forming bullseye markings on the flower face. We identified the gene underlying the Eluta locus by transposon-tagging, using an Antirrhinum line that spontaneously lost the nonsuppressive el phenotype. A candidate MYB repressor gene at this locus contained a CACTA transposable element. We subsequently identified plants where this element excised, reverting to a suppressive Eluta phenotype. El alleles inhibit expression of anthocyanin biosynthetic genes, confirming it to be a regulatory locus. The modes of action of Eluta were investigated by generating stable transgenic tobacco lines, biolistic transformation of Antirrhinum petals and promoter activation/repression assays. Eluta competes with MYB activators for promoter cis-elements, and also by titrating essential cofactors (bHLH proteins) to reduce transcription of target genes. Eluta restricts the pigmentation established by the R2R3-MYB factors, Rosea and Venosa, with the greatest repression on those parts of the petals where Eluta is most highly expressed. Baur questioned the origin of heredity units determining flower colour variation in cultivated A. majus. Our findings support introgression from wild species into cultivated varieties.


Subject(s)
Anthocyanins , Antirrhinum , Flowers , Gene Expression Regulation, Plant , Phenotype , Pigmentation , Plant Proteins , Antirrhinum/genetics , Flowers/genetics , Flowers/physiology , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Anthocyanins/metabolism , Plants, Genetically Modified , Genes, Plant , Nicotiana/genetics , Promoter Regions, Genetic/genetics , DNA Transposable Elements/genetics , Alleles
2.
New Phytol ; 242(5): 2270-2284, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532557

ABSTRACT

Floral nectar composition beyond common sugars shows great diversity but contributing genetic factors are generally unknown. Manuka (Leptospermum scoparium) is renowned for the antimicrobial compound methylglyoxal in its derived honey, which originates from the precursor, dihydroxyacetone (DHA), accumulating in the nectar. Although this nectar trait is highly variable, genetic contribution to the trait is unclear. Therefore, we investigated key gene(s) and genomic regions underpinning this trait. We used RNAseq analysis to identify nectary-associated genes differentially expressed between high and low nectar DHA genotypes. We also used a manuka high-density linkage map and quantitative trait loci (QTL) mapping population, supported by an improved genome assembly, to reveal genetic regions associated with nectar DHA content. Expression and QTL analyses both pointed to the involvement of a phosphatase gene, LsSgpp2. The expression pattern of LsSgpp2 correlated with nectar DHA accumulation, and it co-located with a QTL on chromosome 4. The identification of three QTLs, some of the first reported for a plant nectar trait, indicates polygenic control of DHA content. We have established plant genetics as a key influence on DHA accumulation. The data suggest the hypothesis of LsSGPP2 releasing DHA from DHA-phosphate and variability in LsSgpp2 gene expression contributing to the trait variability.


Subject(s)
Dihydroxyacetone , Gene Expression Regulation, Plant , Leptospermum , Plant Nectar , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Plant Nectar/metabolism , Dihydroxyacetone/metabolism , Leptospermum/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Genes, Plant , Genotype , Chromosome Mapping , Chromosomes, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Ann Bot ; 130(5): 613-636, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36070407

ABSTRACT

BACKGROUND: Land plants commonly produce red pigmentation as a response to environmental stressors, both abiotic and biotic. The type of pigment produced varies among different land plant lineages. In the majority of species they are flavonoids, a large branch of the phenylpropanoid pathway. Flavonoids that can confer red colours include 3-hydroxyanthocyanins, 3-deoxyanthocyanins, sphagnorubins and auronidins, which are the predominant red pigments in flowering plants, ferns, mosses and liverworts, respectively. However, some flowering plants have lost the capacity for anthocyanin biosynthesis and produce nitrogen-containing betalain pigments instead. Some terrestrial algal species also produce red pigmentation as an abiotic stress response, and these include both carotenoid and phenolic pigments. SCOPE: In this review, we examine: which environmental triggers induce red pigmentation in non-reproductive tissues; theories on the functions of stress-induced pigmentation; the evolution of the biosynthetic pathways; and structure-function aspects of different pigment types. We also compare data on stress-induced pigmentation in land plants with those for terrestrial algae, and discuss possible explanations for the lack of red pigmentation in the hornwort lineage of land plants. CONCLUSIONS: The evidence suggests that pigment biosynthetic pathways have evolved numerous times in land plants to provide compounds that have red colour to screen damaging photosynthetically active radiation but that also have secondary functions that provide specific benefits to the particular land plant lineage.


Subject(s)
Anthocyanins , Embryophyta , Anthocyanins/metabolism , Pigmentation , Betalains/metabolism , Plants/metabolism , Flavonoids/metabolism
4.
New Phytol ; 235(2): 630-645, 2022 07.
Article in English | MEDLINE | ID: mdl-35348217

ABSTRACT

Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.


Subject(s)
Actinidia , MicroRNAs , Actinidia/genetics , Actinidia/metabolism , Anthocyanins/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Proteins/metabolism
5.
J Exp Bot ; 73(13): 4396-4411, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35259256

ABSTRACT

Life on land exposes plants to varied abiotic and biotic environmental stresses. These environmental drivers contributed to a large expansion of metabolic capabilities during land plant evolution and species diversification. In this review we summarize knowledge on how the specialized metabolite pathways of bryophytes may contribute to stress tolerance capabilities. Bryophytes are the non-tracheophyte land plant group (comprising the hornworts, liverworts, and mosses) and rapidly diversified following the colonization of land. Mosses and liverworts have as wide a distribution as flowering plants with regard to available environments, able to grow in polar regions through to hot desert landscapes. Yet in contrast to flowering plants, for which the biosynthetic pathways, transcriptional regulation, and compound function of stress tolerance-related metabolite pathways have been extensively characterized, it is only recently that similar data have become available for bryophytes. The bryophyte data are compared with those available for angiosperms, including examining how the differing plant forms of bryophytes and angiosperms may influence specialized metabolite diversity and function. The involvement of stress-induced specialized metabolites in senescence and nutrient response pathways is also discussed.


Subject(s)
Bryophyta , Magnoliopsida , Biosynthetic Pathways , Plants , Stress, Physiological
6.
Front Plant Sci ; 12: 653147, 2021.
Article in English | MEDLINE | ID: mdl-33995448

ABSTRACT

Although red betalain pigments (betacyanins) have been associated with salinity tolerance in some halophytes like Disphyma australe, efforts to determine whether they have a causal role and the underlying mechanisms have been hampered by a lack of a model system. To address this, we engineered betalain-producing Nicotiana tabacum, by the introduction of three betalain biosynthetic genes. The plants were violet-red due to the accumulation of three betacyanins: betanin, isobetanin, and betanidin. Under salt stress, betacyanic seedlings had increased survivability and leaves of mature plants had higher photochemical quantum yields of photosystem II (F v /F m ) and faster photosynthetic recovery after saturating light treatment. Under salt stress, compared to controls betacyanic leaf disks had no loss of carotenoids, a slower rate of chlorophyll degradation, and higher F v /F m values. Furthermore, simulation of betacyanin pigmentation by using a red filter cover improved F v /F m value of green tissue under salt stress. Our results confirm a direct causal role of betacyanins in plant salinity tolerance and indicate a key mechanism is photoprotection. A role in delaying leaf senescence was also indicated, and the enhanced antioxidant capability of the betacyanic leaves suggested a potential contribution to scavenging reactive oxygen species. The study can inform the development of novel biotechnological approaches to improving agricultural productivity in saline-affected areas.

7.
New Phytol ; 231(2): 849-863, 2021 07.
Article in English | MEDLINE | ID: mdl-33616943

ABSTRACT

Floral pigmentation patterning is important for pollinator attraction as well as aesthetic appeal. Patterning of anthocyanin accumulation is frequently associated with variation in activity of the Myb, bHLH and WDR transcription factor complex (MBW) that regulates anthocyanin biosynthesis. Investigation of two classic mutants in Antirrhinum majus, mutabilis and incolorata I, showed they affect a gene encoding a bHLH protein belonging to subclade bHLH-2. The previously characterised gene, Delila, which encodes a bHLH-1 protein, has a bicoloured mutant phenotype, with residual lobe-specific pigmentation conferred by Incolorata I. Both Incolorata I and Delila induce expression of the anthocyanin biosynthetic gene DFR. Rosea 1 (Myb) and WDR1 proteins compete for interaction with Delila, but interact positively to promote Incolorata I activity. Delila positively regulates Incolorata I and WDR1 expression. Hierarchical regulation can explain the bicoloured patterning of delila mutants, through effects on both regulatory gene expression and the activity of promoters of biosynthetic genes like DFR that mediate MBW regulation. bHLH-1 and bHLH-2 proteins contribute to establishing patterns of pigment distribution in A. majus flowers in two ways: through functional redundancy in regulating anthocyanin biosynthetic gene expression, and through differences between the proteins in their ability to regulate genes encoding transcription factors.


Subject(s)
Antirrhinum , Anthocyanins , Antirrhinum/genetics , Antirrhinum/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Front Plant Sci ; 11: 7, 2020.
Article in English | MEDLINE | ID: mdl-32117358

ABSTRACT

The flavonoid pathway is one of the best characterized specialized metabolite pathways of plants. In angiosperms, the flavonoids have varied roles in assisting with tolerance to abiotic stress and are also key for signaling to pollinators and seed dispersal agents. The pathway is thought to be specific to land plants and to have arisen during the period of land colonization around 550-470 million years ago. In this review we consider current knowledge of the flavonoid pathway in the bryophytes, consisting of the liverworts, hornworts, and mosses. The pathway is less characterized for bryophytes than angiosperms, and the first genetic and molecular studies on bryophytes are finding both commonalities and significant differences in flavonoid biosynthesis and pathway regulation between angiosperms and bryophytes. This includes biosynthetic pathway branches specific to each plant group and the apparent complete absence of flavonoids from the hornworts.

9.
Proc Natl Acad Sci U S A ; 116(40): 20232-20239, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527265

ABSTRACT

Anthocyanins are key pigments of plants, providing color to flowers, fruit, and foliage and helping to counter the harmful effects of environmental stresses. It is generally assumed that anthocyanin biosynthesis arose during the evolutionary transition of plants from aquatic to land environments. Liverworts, which may be the closest living relatives to the first land plants, have been reported to produce red cell wall-bound riccionidin pigments in response to stresses such as UV-B light, drought, and nutrient deprivation, and these have been proposed to correspond to the first anthocyanidins present in early land plant ancestors. Taking advantage of the liverwort model species Marchantia polymorpha, we show that the red pigments of Marchantia are formed by a phenylpropanoid biosynthetic branch distinct from that leading to anthocyanins. They constitute a previously unreported flavonoid class, for which we propose the name "auronidin," with similar colors as anthocyanin but different chemistry, including strong fluorescence. Auronidins might contribute to the remarkable ability of liverworts to survive in extreme environments on land, and their discovery calls into question the possible pigment status of the first land plants.


Subject(s)
Anthocyanins/biosynthesis , Flavonoids/metabolism , Pigments, Biological/metabolism , Plants/metabolism , Biological Evolution , Flavonoids/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Pigments, Biological/chemistry
10.
Front Plant Sci ; 9: 1300, 2018.
Article in English | MEDLINE | ID: mdl-30254656

ABSTRACT

The Vaccinium genus in the family Ericaceae comprises many species, including the fruit-bearing blueberry, bilberry, cranberry, huckleberry, and lingonberry. Commercially, the most important are the blueberries (Vaccinium section Cyanococcus), such as Vaccinium corymbosum (northern highbush blueberry), Vaccinium virgatum (rabbiteye blueberry), and Vaccinium angustifolium (lowbush blueberry). The rising popularity of blueberries can partly be attributed to their "superfood" status, with an increasing body of evidence around human health benefits resulting from the fruit metabolites, particularly products of the phenylpropanoid pathway such as anthocyanins. Activation of anthocyanin production by R2R3-MYB transcription factors (TFs) has been characterized in many species, but despite recent studies on blueberry, cranberry, and bilberry, no MYB anthocyanin regulators have been reported for Vaccinium. Indeed, there has been conjecture that at least in bilberry, MYB TFs divergent to the usual type are involved. We report identification of MYBA from blueberry, and show through sequence analysis and functional studies that it is homologous to known anthocyanin-promoting R2R3-MYBs of subgroup 6 of the MYB superfamily. In transient assays, MYBA complemented an anthocyanin MYB mutant of Antirrhinum majus and, together with a heterologous bHLH anthocyanin regulator, activated anthocyanin production in Nicotiana benthamiana. Furthermore anthocyanin accumulation and anthocyanin structural gene expression (assayed by qPCR and RNA-seq analyses) correlated with MYBA expression, and MYBA was able to transactivate the DFR promoter from blueberry and other species. The RNA-seq data also revealed a range of other candidate genes involved in the regulation of anthocyanin production in blueberry fruit. The identification of MYBA will help to resolve the regulatory mechanism for anthocyanin pigmentation in the Vaccinium genus. The sequence information should also prove useful in developing tools for the accelerated breeding of new Vaccinium cultivars.

11.
Plant J ; 96(3): 503-517, 2018 11.
Article in English | MEDLINE | ID: mdl-30044520

ABSTRACT

Damaging UVB radiation is a major abiotic stress facing land plants. In angiosperms the UV RESISTANCE LOCUS8 (UVR8) photoreceptor coordinates UVB responses, including inducing biosynthesis of protective flavonoids. We characterised the UVB responses of Marchantia polymorpha (marchantia), the model species for the liverwort group of basal plants. Physiological, chemical and transcriptomic analyses were conducted on wild-type marchantia exposed to three different UVB regimes. CRISPR/Cas9 was used to obtain plant lines with mutations for components of the UVB signal pathway or the flavonoid biosynthetic pathway, and transgenics overexpressing the marchantia UVR8 sequence were generated. The mutant and transgenic lines were analysed for changes in flavonoid content, their response to UVB exposure, and transcript abundance of a set of 48 genes that included components of the UVB response pathway characterised for angiosperms. The marchantia UVB response included many components in common with Arabidopsis, including production of UVB-absorbing flavonoids, the central activator role of ELONGATED HYPOCOTYL5 (HY5), and negative feedback regulation by REPRESSOR OF UV-B PHOTOMORPHOGENESIS1 (RUP1). Notable differences included the greater importance of CHALCONE ISOMERASE-LIKE (CHIL). Mutants disrupted in the response pathway (hy5) or flavonoid production (chalcone isomerase, chil) were more easily damaged by UVB. Mutants (rup1) or transgenics (35S:MpMYB14) with increased flavonoid content had increased UVB tolerance. The results suggest that UVR8-mediated flavonoid induction is a UVB tolerance character conserved across land plants and may have been an early adaptation to life on land.


Subject(s)
Flavonoids/metabolism , Magnoliopsida/physiology , Marchantia/physiology , Plant Proteins/genetics , Signal Transduction/radiation effects , Biosynthetic Pathways/radiation effects , Gene Expression Profiling , Magnoliopsida/genetics , Magnoliopsida/radiation effects , Marchantia/genetics , Marchantia/radiation effects , Ultraviolet Rays
12.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29661190

ABSTRACT

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Subject(s)
Actinidia/genetics , Genome, Plant , Genes, Plant , Genotype , Molecular Sequence Annotation , Plant Proteins/genetics
13.
New Phytol ; 218(2): 554-566, 2018 04.
Article in English | MEDLINE | ID: mdl-29363139

ABSTRACT

The flavonoid pathway is hypothesized to have evolved during land colonization by plants c. 450 Myr ago for protection against abiotic stresses. In angiosperms, R2R3MYB transcription factors are key for environmental regulation of flavonoid production. However, angiosperm R2R3MYB gene families are larger than those of basal plants, and it is not known whether the regulatory system is conserved across land plants. We examined whether R2R3MYBs regulate the flavonoid pathway in liverworts, one of the earliest diverging land plant lineages. We characterized MpMyb14 from the liverwort Marchantia polymorpha using genetic mutagenesis, transgenic overexpression, gene promoter analysis, and transcriptomic and chemical analysis. MpMyb14 is phylogenetically basal to characterized angiosperm R2R3MYB flavonoid regulators. Mpmyb14 knockout lines lost all red pigmentation from the flavonoid riccionidin A, whereas overexpression conferred production of large amounts of flavones and riccionidin A, activation of associated biosynthetic genes, and constitutive red pigmentation. MpMyb14 expression and flavonoid pigmentation were induced by light- and nutrient-deprivation stress in M. polymorpha as for anthocyanins in angiosperms. MpMyb14 regulates stress-induced flavonoid production in M. polymorpha, and is essential for red pigmentation. This suggests that R2R3MYB regulated flavonoid production is a conserved character across land plants which arose early during land colonization.


Subject(s)
Flavonoids/biosynthesis , Marchantia/genetics , Marchantia/physiology , Plant Proteins/metabolism , Stress, Physiological , Amino Acid Motifs , Amino Acid Sequence , Base Sequence , Biosynthetic Pathways/genetics , CRISPR-Cas Systems/genetics , Gene Expression Regulation, Plant , Genes, Plant , Light , Mutation/genetics , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Propanols/metabolism
14.
Front Plant Sci ; 7: 1865, 2016.
Article in English | MEDLINE | ID: mdl-28018399

ABSTRACT

Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

15.
Phytochemistry ; 128: 27-34, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27165277

ABSTRACT

Vegetative shoots of a naturalized population of purple-leaved plectranthus (Plectranthus ciliatus, Lamiaceae) were found to contain four main anthocyanins: peonidin 3-(6″-caffeoyl-ß-glucopyranoside)-5-ß-glucopyranoside, peonidin 3-(6″-caffeoyl-ß-glucopyranoside)-5-(6‴-malonyl-ß-glucopyranoside), peonidin 3-(6″-E-p-coumaroyl-ß-glucopyranoside)-5-(6‴-malonyl-ß-glucopyranoside), and peonidin 3-(6″-E-p-coumaroyl-ß-glucopyranoside)-5-ß-glucopyranoside. The first three of these pigments have not been reported previously from any plant. They all follow the typical anthocyanin pattern of Lamiaceae, with universal occurrence of anthocyanidin 3,5-diglucosides and aromatic acylation with p-coumaric and sometimes caffeic acids; however, they differ by being based on peonidin. The four anthocyanins were present in the leaves (22.2 mg g(-1) DW), and in the xylem and interfascicular parenchyma of the stem. They were exceptionally abundant, among the highest reported for any plant organ, in epidermal hairs on some of the stem internodes (101 mg g(-1) DW). Anthocyanin content in these hairs increased more than three-fold from the youngest to the fourth-youngest internodes. In situ absorbances (λmax ≈ 545 nm) were bathochromic in comparison to absorbances of the isolated anthocyanins in their flavylium form in acidified aqueous solutions (λmax = 525 nm), suggesting that the anthocyanins occur both in quinoidal and flavylium forms in constant proportions in the anthocyanic hair cells. The most distinctive observation with respect to relative proportions of individual anthocyanins was found in de-haired internodes, for which anthocyanin caffeoyl-derivatives decreased, and anthocyanin coumaroyl-derivatives increased, from the youngest to the fourth-youngest internode.


Subject(s)
Anthocyanins/analysis , Plants , Plectranthus/chemistry , Acylation , Anthocyanins/chemistry , Anthocyanins/metabolism , Coumarins , Molecular Structure , Pigmentation , Plant Leaves/metabolism , Plants/anatomy & histology , Stereoisomerism
16.
New Phytol ; 210(1): 6-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26919693

Subject(s)
Betalains , Levodopa , Oxygenases
17.
Front Plant Sci ; 6: 499, 2015.
Article in English | MEDLINE | ID: mdl-26217353

ABSTRACT

Plant betalain pigments are intriguing because they are restricted to the Caryophyllales and are mutually exclusive with the more common anthocyanins. However, betalain biosynthesis is poorly understood compared to that of anthocyanins. In this study, betalain production and betalain-related genes were characterized in Parakeelya mirabilis (Montiaceae). RT-PCR and transcriptomics identified three sequences related to the key biosynthetic enzyme Dopa 4,5-dioxgenase (DOD). In addition to a LigB gene similar to that of non-Caryophyllales species (Class I genes), two other P. mirabilis LigB genes were found (DOD and DOD-like, termed Class II). PmDOD and PmDOD-like had 70% amino acid identity. Only PmDOD was implicated in betalain synthesis based on transient assays of enzyme activity and correlation of transcript abundance to spatio-temporal betalain accumulation. The role of PmDOD-like remains unknown. The striking pigment patterning of the flowers was due to distinct zones of red betacyanin and yellow betaxanthin production. The major betacyanin was the unglycosylated betanidin rather than the commonly found glycosides, an occurrence for which there are a few previous reports. The white petal zones lacked pigment but had DOD activity suggesting alternate regulation of the pathway in this tissue. DOD and DOD-like sequences were also identified in other betalain-producing species but not in examples of anthocyanin-producing Caryophyllales or non-Caryophyllales species. A Class I LigB sequence from the anthocyanin-producing Caryophyllaceae species Dianthus superbus and two DOD-like sequences from the Amaranthaceae species Beta vulgaris and Ptilotus spp. did not show DOD activity in the transient assay. The additional sequences suggests that DOD is part of a larger LigB gene family in betalain-producing Caryophyllales taxa, and the tandem genomic arrangement of two of the three B. vulgaris LigB genes suggests the involvement of duplication in the gene family evolution.

18.
Plant Cell Rep ; 34(10): 1817-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26113165

ABSTRACT

KEY MESSAGE: The Md - MYB10 R6 gene from apple is capable of self-regulating in heterologous host species and enhancing anthocyanin pigmentation, but the activity of MYB10 is dependent on endogenous protein partners. Coloured foliage due to anthocyanin pigments (bronze/red/black) is an attractive trait that is often lacking in many bedding, ornamental and horticultural plants. Apples (Malus × domestica) containing an allelic variant of the anthocyanin regulator, Md-MYB10 R6 , are highly pigmented throughout the plant, due to autoregulation by MYB10 upon its own promoter. We investigated whether Md-MYB10 R6 from apple is capable of functioning within the heterologous host Petunia hybrida to generate plants with novel pigmentation patterns. The Md-MYB10 R6 transgene (MYB10-R6 pro :MYB10:MYB10 term ) activated anthocyanin synthesis when transiently expressed in Antirrhinum rosea (dorsea) petals and petunia leaf discs. Stable transgenic petunias containing Md-MYB10 R6 lacked foliar pigmentation but had coloured flowers, complementing the an2 phenotype of 'Mitchell' petunia. The absence of foliar pigmentation was due to the failure of the Md-MYB10 R6 gene to self-activate in vegetative tissues, suggesting that additional protein partners are required for Md-MYB10 to activate target genes in this heterologous system. In petunia flowers, where endogenous components including MYB-bHLH-WDR (MBW) proteins were present, expression of the Md-MYB10 R6 promoter was initiated, allowing auto-regulation to occur and activating anthocyanin production. Md-MYB10 is capable of operating within the petunia MBW gene regulation network that controls the expression of the anthocyanin biosynthesis genes, AN1 (bHLH) and MYBx (R3-MYB repressor) in petals.


Subject(s)
Flowers/metabolism , Gene Expression Regulation, Plant , Petunia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Petunia/genetics
19.
New Phytol ; 207(4): 1075-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25870915

ABSTRACT

The capacity to synthesize betalains has arisen in diverse phylogenetic lineages across the Caryophyllales, and because betalainic plants often grow in deserts, sand dunes, or salt marshes, it is likely that these pigments confer adaptive advantages. However, possible functional roles of foliar betalains remain largely unexplored and are difficult to test experimentally. We adopted a novel approach to examine putative photoprotective roles of betalains in leaves for which chloroplast function has been compromised by salinity. Responses of l-DOPA-treated red shoots of Disphyma australe to high light and salinity were compared with those of naturally red- and green-leafed morphs. Betalain content and tyrosinase activity were measured, and Chl fluorescence profiles and H2 O2 production were compared under white, red or green light. Green leaves lacked tyrosinase activity, but when supplied with exogenous l-DOPA they produced five betacyanins. Both the naturally red and l-DOPA-induced red leaves generated less H2 O2 and showed smaller declines in photosystem II quantum efficiency than did green leaves when exposed to white or green light, although not when exposed to red light. Light screening by epidermal betalains effectively reduces the propensity for photoinhibition and photo-oxidative stress in subjacent chlorenchyma. This may assist plant survival in exposed and saline environments.


Subject(s)
Betalains/metabolism , Levodopa/pharmacology , Light , Magnoliopsida/physiology , Plant Leaves/physiology , Sodium Chloride/pharmacology , Chromatography, High Pressure Liquid , Fluoresceins/metabolism , Hydrogen Peroxide/metabolism , Magnoliopsida/drug effects , Magnoliopsida/radiation effects , Monophenol Monooxygenase/metabolism , Photochemical Processes/drug effects , Photochemical Processes/radiation effects , Photosystem II Protein Complex/metabolism , Pigmentation/drug effects , Pigmentation/radiation effects , Plant Leaves/drug effects , Plant Leaves/radiation effects , Plant Shoots/drug effects , Plant Shoots/radiation effects , Time Factors
20.
Front Plant Sci ; 5: 603, 2014.
Article in English | MEDLINE | ID: mdl-25414715

ABSTRACT

Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...