Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 8(9): eabm1077, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35245111

ABSTRACT

Schizophrenia (SCZ) is a chronic, serious mental disorder. Although more than 200 SCZ-associated genes have been identified, the underlying molecular and cellular mechanisms remain largely unknown. Here, we generated a Setd1a (SET domain containing 1A) haploinsufficiency mouse model to understand how this SCZ-associated epigenetic factor affects gene expression in brain regions highly relevant to SCZ. Single-cell RNA sequencing revealed that Setd1a heterozygosity causes highly variable transcriptional adaptations across different cell types in prefrontal cortex (PFC) and striatum. The Foxp2+ neurons exhibit the most prominent gene expression changes among the different neuron subtypes in PFC, which correlate with changes in histone H3 lysine 4 trimethylation. Many of the genes dysregulated in Setd1a+/- mice are involved in neuron morphogenesis and synaptic function. Consistently, Setd1a+/- mice exhibit certain behavioral features of patients with SCZ. Collectively, our study establishes Setd1a+/- mice as a model for understanding SCZ and uncovers a complex brain region- and cell type-specific dysregulation that potentially underlies SCZ pathogenesis.


Subject(s)
Schizophrenia , Animals , Brain/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Neurons/metabolism , Prefrontal Cortex/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
2.
Hum Mol Genet ; 23(12): 3316-26, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24474471

ABSTRACT

Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100 kb), rare copy-number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1564 cases and 1748 controls all from Ireland, and further extended the analysis to include an additional 5196 UK controls. We found association with duplications at chr20p12.2 (P = 0.007) and evidence of replication in large independent European schizophrenia (P = 0.052) and UK bipolar disorder case-control cohorts (P = 0.047). A combined analysis of Irish/UK subjects including additional psychosis cases (schizophrenia and bipolar disorder) identified 22 carriers in 11 707 cases and 10 carriers in 21 204 controls [meta-analysis Cochran-Mantel-Haenszel P-value = 2 × 10(-4); odds ratio (OR) = 11.3, 95% CI = 3.7, ∞]. Nineteen of the 22 cases and 8 of the 10 controls carried duplications starting at 9.68 Mb with similar breakpoints across samples. By haplotype analysis and sequencing, we identified a tandem ~149 kb duplication overlapping the gene p21 Protein-Activated Kinase 7 (PAK7, also called PAK5) which was in linkage disequilibrium with local haplotypes (P = 2.5 × 10(-21)), indicative of a single ancestral duplication event. We confirmed the breakpoints in 8/8 carriers tested and found co-segregation of the duplication with illness in two additional family members of one of the affected probands. We demonstrate that PAK7 is developmentally co-expressed with another known psychosis risk gene (DISC1) suggesting a potential molecular mechanism involving aberrant synapse development and plasticity.


Subject(s)
Bipolar Disorder/genetics , Chromosome Duplication , Nerve Tissue Proteins/metabolism , Psychotic Disorders/genetics , Schizophrenia/genetics , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , Bipolar Disorder/pathology , Case-Control Studies , Chromosome Breakpoints , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Neuronal Plasticity , Psychotic Disorders/pathology , Schizophrenia/pathology , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL