Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1863(8): 1254-1262, 2019 08.
Article in English | MEDLINE | ID: mdl-31077794

ABSTRACT

BACKGROUND: Natural defence of plants against insect pests involves protease inhibitors (PIs) that interfere with insect digestive proteases. Pin-II type plant PIs are wound inducible upon insect damage and possess multiple inhibitory repeat domains that can inhibit trypsin and chymotrypsin-like proteases in the insect midgut. Yet, their agricultural ex-vivo application is limited due to large molecular size and environmental instability, which could be overcome by small peptides. METHODS: Bicyclic peptides were designed by grafting Pin-II PIs derived reactive center loop (RCL) on synthetic tris(bromomethyl)benzene scaffold. In vitro binding with trypsin-like proteases was evaluated by biochemical and biophysical assays, followed by molecular dynamics simulations. In vivo effects on two major lepidopteran insect pests, Helicoverpa armigera and Spodoptera litura were studied upon feeding with peptide treated leaves. Affinity based pull down assays were used to identify target proteins in insect gut. RESULTS: Bicyclic RCLs showed ten-fold enhanced protease inhibition compared to their linear counterparts. They exhibited feeding deterrence and growth reduction of lepidopteran insects. Bicyclic peptides predominantly interact with midgut serine proteases. Possible binding modes involve simultaneous interaction with the active site and specificity-determining residues of insect gut trypsin. CONCLUSION: Bicyclic peptides are potent inhibitors of serine proteases in the insect midgut. They cause feeding aversion and larval growth retardation. Bi-domain cyclic peptides interact with two sites on trypsin, leading to enhanced efficacy over linear RCL peptides. GENERAL SIGNIFICANCE: Bicyclic peptides mimic natural PIs by inhibiting insect proteases leading to growth reduction, thus, could be used as pest control molecules in agriculture.


Subject(s)
Crops, Agricultural/parasitology , Lepidoptera/physiology , Peptides, Cyclic/metabolism , Plant Proteins/chemistry , Protease Inhibitors/metabolism , Animals , Biological Assay , Lepidoptera/drug effects , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Plant Leaves/metabolism , Protease Inhibitors/isolation & purification
2.
Proteomics ; 16(17): 2403-18, 2016 09.
Article in English | MEDLINE | ID: mdl-27324523

ABSTRACT

Globally, breast cancer is the second most common cancer among women. Although biomarker discoveries through various proteomic approaches of tissue and serum samples have been studied in breast cancer, urinary proteome alterations in breast cancer are least studied. Urine being a noninvasive biofluid and a significant source of proteins, it has the potential in early diagnosis of breast cancer. This study used complementary quantitative gel-based and gel-free proteomic approaches to find a panel of urinary protein markers that could discriminate HER2 enriched (HE) subtype breast cancer from the healthy controls. A total of 183 differentially expressed proteins were identified using three complementary approaches, namely 2D-DIGE, iTRAQ, and sequential window acquisition of all theoretical mass spectra. The differentially expressed proteins were subjected to various bioinformatics analyses for deciphering the biological context of these proteins using protein analysis through evolutionary relationships, database for annotation, visualization and integrated discovery, and STRING. Multivariate statistical analysis was undertaken to identify the set of most significant proteins, which could discriminate HE breast cancer from healthy controls. Immunoblotting and MRM-based validation in a separate cohort testified a panel of 21 proteins such as zinc-alpha2-glycoprotein, A2GL, retinol-binding protein 4, annexin A1, SAP3, SRC8, gelsolin, kininogen 1, CO9, clusterin, ceruloplasmin, and α1-antitrypsin could be a panel of candidate markers that could discriminate HE breast cancer from healthy controls.


Subject(s)
Breast Neoplasms/urine , Proteome/analysis , Receptor, ErbB-2/analysis , Breast/pathology , Breast Neoplasms/metabolism , Female , Humans , Mass Spectrometry , Middle Aged , Protein Interaction Maps , Proteome/metabolism , Proteomics , Receptor, ErbB-2/metabolism , Two-Dimensional Difference Gel Electrophoresis
3.
J Proteomics ; 132: 112-30, 2016 Jan 30.
Article in English | MEDLINE | ID: mdl-26642762

ABSTRACT

Worldwide, breast cancer is one of the frequently diagnosed cancers in women with high mortality if not diagnosed at early stage. Although biomarker discoveries through various proteomic approaches have been studied in breast cancer, a limited number of studies have explored the invasive ductal carcinoma with Luminal B HER2 positive (LB) and HER2 enriched (HE) subtypes. The present study employed the complementary quantitative proteomic approaches to find a panel of markers that could discriminate LB and HE subtypes as well as early (ES) and late stages (LS) of these subtypes. A total of 67 and 68 differentially expressed proteins were identified by DIGE for the subtype and stage wise categories, respectively. Multivariate statistical analysis was employed to identify the set of most significant proteins, which could discriminate between these two subtypes and also early and late stages under study. Immunoblotting and MRM based validation in a separate cohort of samples confirmed that panel of biosignatures for LB are APOA1, GELS, HS90B, EF1A1, NHRF1 and PRDX3 and for HE are PRDX1, CATD, CALR, ATPB and CH60. For the diagnosis of early and late stages the potential markers are TPM4, CATD, PRDX3, ANXA3, HSPB1 and CALR, TRFE, GELS, CH60, CAPG, NHRF1, 1433G, GRP78 respectively.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Neoplasm Proteins/metabolism , Proteome/metabolism , Receptor, ErbB-2/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Carcinoma, Ductal, Breast/diagnosis , Carcinoma, Ductal, Breast/therapy , Endoplasmic Reticulum Chaperone BiP , Female , Humans , Middle Aged , Molecular Targeted Therapy/methods , Reproducibility of Results , Sensitivity and Specificity
4.
Data Brief ; 2: 21-5, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26217699

ABSTRACT

2DE and 2D-DIGE based proteomics analysis of serum from women with endometriosis revealed several proteins to be dysregulated. A complete list of these proteins along with their mass spectrometry data and subsequent bioinformatics analysis are presented here. The data is related to "Investigation of serum proteome alterations in human endometriosis" by Dutta et al. [1].

5.
J Proteomics ; 114: 182-96, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25449831

ABSTRACT

Endometriosis is a common benign gynecological disease, characterized by proliferation of functional endometrial glands and stroma outside the uterine cavity. The present study involves investigation of alterations in the serum proteome of endometriosis patients compared to healthy controls using 2DE and 2D-DIGE combined with MALDI TOF/TOF-MS. Comparison of serum proteome of endometriosis patients and healthy subjects revealed 25 significant differentially expressed proteins. Gene ontology and network analysis, performed using PANTHER, DAVID, WebGestalt and STRING, revealed that the differentially expressed proteins are majorly involved in response to stimulus, immune system, metabolic, localization and cellular processes. For serum diagnostic marker identification, several robust statistical screening procedures were applied to identify the set of the most significant proteins responsible for successful diagnosis of different endometriosis stages. Partial least squares (PLS) based marker selection tool and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to identify the most significant proteins for disease prediction. Western blotting validation in a separate cohort of patients revealed that haptoglobin (HP), Ig kappa chain C region (IGKC), alpha-1B-glycoprotein (A1BG) can be considered effective serum protein markers for the diagnosis of Stage II, III and IV endometriosis. For diagnosis of Stage I, only IGKC and HP seemed promising. BIOLOGICAL SIGNIFICANCE: Globally, about 12 in 100 women of reproductive age are diagnosed with endometriosis. The pathogenesis of the disease still remains unclear, leading to non-specific therapeutic approaches for disease management. Moreover, there is a delay of 8-12years in correct diagnosis after the initial onset of symptoms leading to a considerable impact on the woman's lifestyle. Also, the gold standard for diagnosis of endometriosis, laparoscopy, is an invasive procedure. The value of a noninvasive or semi-invasive diagnostic test for endometriosis with easily accessible fluids such as plasma, serum, urine, and saliva is, therefore, rightfully recognized. The present study is expected to considerably improve the understanding of the disease pathogenesis along with improved diagnostics and therapeutic approaches leading to better management of the disease.


Subject(s)
Blood Proteins/metabolism , Endometriosis/blood , Proteome/metabolism , Adult , Biomarkers/analysis , Biomarkers/metabolism , Blood Proteins/analysis , Case-Control Studies , Electrophoresis, Gel, Two-Dimensional , Endometriosis/metabolism , Endometriosis/pathology , Female , Humans , Proteome/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Two-Dimensional Difference Gel Electrophoresis
SELECTION OF CITATIONS
SEARCH DETAIL