Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Agric For Meteorol ; 2912020 Sep 15.
Article En | MEDLINE | ID: mdl-35646194

More frequent and severe disturbances increasingly open the forest canopy and initiate tree regeneration. Simultaneously, increasing weather extremes, such as drought and heat, are threatening species adapted to cool and moist climate. The magnitude of the microclimatic buffering capacity of forest canopies to mitigate hot and dry weather conditions and its disturbance-induced reduction remains poorly quantified. Also, the influence of disturbance legacies (e.g., deadwood) on forest microclimate is unresolved. In a unique manipulation experiment we investigated (i) the microclimatic buffering capacity of forest canopies in years with different climatic conditions; (ii) the impacts of spatial disturbance patterns on surface light and microclimate; and (iii) the effect of deadwood presence and type on microclimate. Treatments included two disturbance patterns (i.e., aggregated and distributed), four deadwood types (i.e., standing, downed, standing and downed, removed), and one untreated control (i.e., nine treatments in total), replicated at five sites dominated by European beech (Fagus sylvatica L.) in southeastern Germany. We measured forest floor light conditions and derived diurnal extremes and variation in temperature (T) and vapor pressure deficit (VPD) during four consecutive summer seasons (2016 - 2019). The buffering capacity of intact forest canopies was higher in warm and dry years. Surface light was significantly higher in spatially aggregated disturbance gaps compared to distributed disturbances of similar severity. An increase in surface light by 10 % relative to closed canopies elevated Tmax and VPDmax by 0.42°C and 0.04 kPa, respectively. Deadwood presence and type did not affect the forest microclimate significantly. Microclimatic buffering under forest canopies can dampen the effects of climate change. However, increasing canopy disturbances result in more light penetrating the canopy, reducing the microclimatic buffering capacity of forests. We conclude that forest management should foster microclimatic buffering in forests as one element of a multi-pronged strategy to counter climate change.

2.
Nat Commun ; 9(1): 4978, 2018 11 26.
Article En | MEDLINE | ID: mdl-30478255

Mortality is a key indicator of forest health, and increasing mortality can serve as bellwether for the impacts of global change on forest ecosystems. Here we analyze trends in forest canopy mortality between 1984 and 2016 over more than 30 Mill. ha of temperate forests in Europe, based on a unique dataset of 24,000 visually interpreted spectral trajectories from the Landsat archive. On average, 0.79% of the forest area was affected by natural or human-induced mortality annually. Canopy mortality increased by +2.40% year-1, doubling the forest area affected by mortality since 1984. Areas experiencing low-severity mortality increased more strongly than areas affected by stand-replacing mortality events. Changes in climate and land-use are likely causes of large-scale forest mortality increase. Our findings reveal profound changes in recent forest dynamics with important implications for carbon storage and biodiversity conservation, highlighting the importance of improved monitoring of forest mortality.


Forests , Plant Leaves/physiology , Climate , Europe
...