Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 4(1): 387-391, 2021 01 18.
Article in English | MEDLINE | ID: mdl-35014289

ABSTRACT

Multiple sclerosis is complex and heterogeneous. Better tools are needed to be able to monitor this disease among individuals, but blood-based biomarkers are often too rare to profile. In this work, we developed antigen-specific biomaterials to replicate the central nervous system niche where multiple sclerosis biomarkers are amplified. We incorporated mouse brain homogenate into a microporous gelatin methacrylate network. Homogenate-containing biomaterials differentially stimulated cells and led to the marked amplification of disease-relevant, antigen-specific B cells. These results demonstrate that biomaterials containing primary tissue homogenate retain antigen specificity and may be a useful tool for decoding human autoimmunity.


Subject(s)
Antigens/metabolism , Biocompatible Materials/chemistry , Brain/metabolism , Animals , Antigens/chemistry , Autoimmunity , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B7-2 Antigen/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Gelatin/chemistry , Mice , Myelin Proteolipid Protein/chemistry , Myelin Proteolipid Protein/immunology , Myelin Proteolipid Protein/metabolism , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptide Fragments/metabolism , Spleen/cytology , Spleen/metabolism
2.
Biomaterials ; 222: 119440, 2019 11.
Article in English | MEDLINE | ID: mdl-31450159

ABSTRACT

Relapsing-remitting patterns of many autoimmune diseases such as multiple sclerosis (MS) are perpetuated by a recurring circuit of adaptive immune cells that amplify in secondary lymphoid organs (SLOs) and traffic to compartments where antigen is abundant to elicit damage. Some of the most effective immunotherapies impede the migration of immune cells through this circuit, however, broadly suppressing immune cell migration can introduce life-threatening risks for patients. We developed antigen-specific immune decoys (ASIDs) to mimic tissues targeted in autoimmunity and selectively intercept autoimmune cells to preserve host tissue. Using Experimental Autoimmune Encephalomyelitis (EAE) as a model, we conjugated autoantigen PLP139-151 to a microporous collagen scaffold. By subcutaneously implanting ASIDs after induction but prior to the onset of symptoms, mice were protected from paralysis. ASID implants were rich with autoimmune cells, however, reactivity to cognate antigen was substantially diminished and apoptosis was prevalent. ASID-implanted mice consistently exhibited engorged spleens when disease normally peaked. In addition, splenocyte antigen-presenting cells were highly activated in response to PLP rechallenge, but CD3+ and CD19 + effector subsets were significantly decreased, suggesting exhaustion. ASID-implanted mice never developed EAE relapse symptoms even though the ASID material had long since degraded, suggesting exhausted autoimmune cells did not recover functionality. Together, data suggested ASIDs were able to sequester and exhaust immune cells in an antigen-specific fashion, thus offering a compelling approach to inhibit the migration circuit underlying autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity/physiology , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Autoantigens/immunology , Autoimmune Diseases/therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Female , Immune Tolerance , Immunotherapy , Mice
SELECTION OF CITATIONS
SEARCH DETAIL