Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893345

ABSTRACT

Among brain tumors, glioblastoma (GBM) is very challenging to treat as chemotherapeutic drugs can only penetrate the brain to a limited extent due to the blood-brain barrier (BBB). Nanoparticles can be an attractive solution for the treatment of GBM as they can transport drugs across the BBB into the tumor. In this study, normal and GBM organoids comprising six brain cell types were developed and applied to study the uptake, BBB penetration, distribution, and efficacy of fluorescent, ultrasmall gold nanoparticles (AuTio-Dox-AF647s) conjugated with doxorubicin (Dox) and AlexaFluor-647-cadaverine (AF647) by confocal laser scanning microscopy (CLSM), using a mixture of dissolved doxorubicin and fluorescent AF647 molecules as a control. It was shown that the nanoparticles could easily penetrate the BBB and were found in normal and GBM organoids, while the dissolved Dox and AF647 molecules alone were unable to penetrate the BBB. Flow cytometry showed a reduction in glioblastoma cells after treatment with AuTio-Dox nanoparticles, as well as a higher uptake of these nanoparticles by GBM cells in the GBM model compared to astrocytes in the normal cell organoids. In summary, our results show that ultrasmall gold nanoparticles can serve as suitable carriers for the delivery of drugs into organoids to study BBB function.


Subject(s)
Blood-Brain Barrier , Doxorubicin , Glioblastoma , Gold , Metal Nanoparticles , Organoids , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Metal Nanoparticles/chemistry , Gold/chemistry , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Organoids/drug effects , Organoids/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor
2.
Eur J Immunol ; 54(6): e2350721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651231

ABSTRACT

Previous research suggests that group IIA-secreted phospholipase A2 (sPLA2-IIA) plays a role in and predicts lethal COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal relationship between levels of several members of a family of sPLA2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA2 isoforms, sPLA2-IIA, sPLA2-V, sPLA2-X, sPLA2-IB, sPLA2-IIC, and sPLA2-XVI, increased over the first 7 ICU days in those who succumbed to the disease but attenuated over the same time period in survivors. In contrast, a reversed pattern in sPLA2-IID and sPLA2-XIIB levels over 7 days suggests a protective role of these two isoforms. Furthermore, decision tree models demonstrated that sPLA2-IIA outperformed top-ranked cytokines and chemokines as a predictor of patient outcome. Taken together, proteomic analysis revealed temporal sPLA2 patterns that reflect the critical roles of sPLA2 isoforms in severe COVID-19 disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/blood , Female , Male , Middle Aged , Aged , Phospholipases A2, Secretory/blood , Proteomics/methods , Severity of Illness Index , Group II Phospholipases A2/blood , Adult , Protein Isoforms/blood , Cytokines/blood
3.
Front Nutr ; 10: 1111624, 2023.
Article in English | MEDLINE | ID: mdl-37215219

ABSTRACT

Introduction: Polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acid (HUFA) synthetic products and their signaling metabolites play vital roles in immunity, inflammation, and brain development/function. Frequency differences of variants within the fatty acid desaturase (FADS) gene cluster affect levels of HUFAs, their biologically active products, and numerous physiological phenotypes. Fundamental questions remain regarding the impact of this genetic variation on the health of Hispanic/Latino populations. Methods: Data and biospecimens (plasma, red blood cells, buffy coat-derived DNA) from 135 participants (83.7% female) were used to assess the relationship(s) between dietary PUFA levels, a FADS haplotype tagging SNP, rs174537, and the capacity of Hispanic/Latino populations to generate HUFAs in plasma and RBC as well as its potential impact on anthropomorphic phenotypes. Results: The dietary habits of the cohort showed that participant diets contained a high ratio (9.3 ± 0.2, mean ± SEM) of linoleic acid (n-6) to alpha-linolenic acid (n-3) and also contained extremely low levels of n-3 HUFAs (eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA), both features of the Modern Western Diet. Compared to African and European American cohorts, the frequency of the TT rs174537 genotype was highly enriched (53% of subjects) in this Hispanic/Latino cohort and was strongly associated with lower circulating HUFA levels. For example, plasma levels of arachidonic acid (ARA: 20:4, n-6) and EPA (20:5, n-3) were 37% and 23%, respectively, lower in the TT versus the GG genotype. HUFA biosynthetic efficiency, as determined by metabolic product to precursor ratios, was highly dependent (p < 0.0001) on the rs174537 genotype (GG > GT > TT) for both circulating n-6 and n-3 HUFAs. In contrast, the RBC Omega-3 Index (EPA + DHA) was extremely low (2.89 ± 1.65, mean ± sd) in this population and independent of rs174537 genotype. Importantly, the rs174537 genotype was also related to female height with TT genotype participants being 4.5 cm shorter (p = 0.0001) than the GG + GT participants. Discussion: Taken together, this study illustrates that dietary PUFA + HUFA × FADS gene- interactions place a large proportion (>50%) of Hispanic/Latino populations at high risk of a deficiency in both circulating and cellular levels of n-3 HUFAs.

4.
medRxiv ; 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36451888

ABSTRACT

Previous research suggests that group IIA secreted phospholipase A 2 (sPLA 2 -IIA) plays a role in and predicts severe COVID-19 disease. The current study reanalyzed a longitudinal proteomic data set to determine the temporal (days 0, 3 and 7) relationship between the levels of several members of a family of sPLA 2 isoforms and the severity of COVID-19 in 214 ICU patients. The levels of six secreted PLA 2 isoforms, sPLA 2 -IIA, sPLA 2 -V, sPLA 2 -X, sPLA 2 -IB, sPLA 2 -IIC, and sPLA 2 -XVI, increased over the first 7 ICU days in those who succumbed to the disease. sPLA 2 -IIA outperformed top ranked cytokines and chemokines as predictors of patient outcome. A decision tree corroborated these results with day 0 to day 3 kinetic changes of sPLA 2 -IIA that separated the death and severe categories from the mild category and increases from day 3 to day 7 significantly enriched the lethal category. In contrast, there was a time-dependent decrease in sPLA 2 -IID and sPLA 2 -XIIB in patients with severe or lethal disease, and these two isoforms were at higher levels in mild patients. Taken together, proteomic analysis revealed temporal sPLA 2 patterns that reflect the critical roles of sPLA 2 isoforms in severe COVID-19 disease.

5.
J Clin Invest ; 131(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34428181

ABSTRACT

There is an urgent need to identify the cellular and molecular mechanisms responsible for severe COVID-19 that results in death. We initially performed both untargeted and targeted lipidomics as well as focused biochemical analyses of 127 plasma samples and found elevated metabolites associated with secreted phospholipase A2 (sPLA2) activity and mitochondrial dysfunction in patients with severe COVID-19. Deceased COVID-19 patients had higher levels of circulating, catalytically active sPLA2 group IIA (sPLA2-IIA), with a median value that was 9.6-fold higher than that for patients with mild disease and 5.0-fold higher than the median value for survivors of severe COVID-19. Elevated sPLA2-IIA levels paralleled several indices of COVID-19 disease severity (e.g., kidney dysfunction, hypoxia, multiple organ dysfunction). A decision tree generated by machine learning identified sPLA2-IIA levels as a central node in the stratification of patients who died from COVID-19. Random forest analysis and least absolute shrinkage and selection operator-based (LASSO-based) regression analysis additionally identified sPLA2-IIA and blood urea nitrogen (BUN) as the key variables among 80 clinical indices in predicting COVID-19 mortality. The combined PLA-BUN index performed significantly better than did either one alone. An independent cohort (n = 154) confirmed higher plasma sPLA2-IIA levels in deceased patients compared with levels in plasma from patients with severe or mild COVID-19, with the PLA-BUN index-based decision tree satisfactorily stratifying patients with mild, severe, or fatal COVID-19. With clinically tested inhibitors available, this study identifies sPLA2-IIA as a therapeutic target to reduce COVID-19 mortality.


Subject(s)
COVID-19/blood , COVID-19/mortality , Group II Phospholipases A2/blood , SARS-CoV-2/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Child , Disease-Free Survival , Female , Humans , Male , Middle Aged , Severity of Illness Index , Survival Rate
6.
medRxiv ; 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33655264

ABSTRACT

There is an urgent need to identify cellular and molecular mechanisms responsible for severe COVID-19 disease accompanied by multiple organ failure and high mortality rates. Here, we performed untargeted/targeted lipidomics and focused biochemistry on 127 patient plasma samples, and showed high levels of circulating, enzymatically active secreted phospholipase A 2 Group IIA (sPLA 2 -IIA) in severe and fatal COVID-19 disease compared with uninfected patients or mild illness. Machine learning demonstrated that sPLA 2 -IIA effectively stratifies severe from fatal COVID-19 disease. We further introduce a PLA-BUN index that combines sPLA 2 -IIA and blood urea nitrogen (BUN) threshold levels as a critical risk factor for mitochondrial dysfunction, sustained inflammatory injury and lethal COVID-19. With the availability of clinically tested inhibitors of sPLA 2 -IIA, our study opens the door to a precision intervention using indices discovered here to reduce COVID-19 mortality.

7.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L705-L714, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33533300

ABSTRACT

The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum (n = 18) and bronchoalveolar lavage (BAL) fluid (n = 11) were obtained before and after exercise challenge in asthmatic subjects. Samples were analyzed for phospholipid structure, surfactant function, and levels of eicosanoids and secreted phospholipase A2 group 10 (sPLA2-X). A primary epithelial cell culture model was used to model effects of osmotic stress on sPLA2-X. Exercise challenge resulted in increased surfactant degradation, phospholipase activity, and eicosanoid production in sputum samples of all patients. Subjects with EIB had higher levels of surfactant degradation and phospholipase activity in BAL fluid. Higher basal sputum levels of cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) were associated with direct AHR, and both the postexercise and absolute change in CysLTs and PGD2 levels were associated with EIB severity. Surfactant function either was abnormal at baseline or became abnormal after exercise challenge. Baseline levels of sPLA2-X in sputum and the absolute change in amount of sPLA2-X with exercise were positively correlated with EIB severity. Osmotic stress ex vivo resulted in movement of water and release of sPLA2-X to the apical surface. In summary, exercise challenge promotes changes in phospholipid structure and eicosanoid release in asthma, providing two mechanisms that promote bronchoconstriction, particularly in individuals with EIB who have higher basal levels of phospholipid turnover.


Subject(s)
Asthma/complications , Eicosanoids/metabolism , Exercise , Group X Phospholipases A2/metabolism , Phospholipids/metabolism , Respiratory Hypersensitivity/etiology , Surface-Active Agents/metabolism , Adolescent , Adult , Bronchoconstriction , Female , Humans , Hydrolysis , Male , Osmotic Pressure , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology , Sputum , Young Adult
8.
Biomolecules ; 10(10)2020 09 30.
Article in English | MEDLINE | ID: mdl-33007922

ABSTRACT

Prostate cancer (PCa) is the most common male cancer and the second leading cause of cancer death in United States men. Controversy continues over the effectiveness of prostate-specific antigen (PSA) for distinguishing aggressive from indolent PCa. There is a critical need for more specific and sensitive biomarkers to detect and distinguish low- versus high-risk PCa cases. Discovery metabolomics were performed utilizing ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) on plasma samples from 159 men with treatment naïve prostate cancer participating in the North Carolina-Louisiana PCa Project to determine if there were metabolites associated with aggressive PCa. Thirty-five identifiable plasma small molecules were associated with PCa aggressiveness, 15 of which were sphingolipids; nine common molecules were present in both African-American and European-American men. The molecules most associated with PCa aggressiveness were glycosphingolipids; levels of trihexosylceramide and tetrahexosylceramide were most closely associated with high-aggressive PCa. The Cancer Genome Atlas was queried to determine gene alterations within glycosphingolipid metabolism that are associated with PCa and other cancers. Genes that encode enzymes associated with the metabolism of glycosphingolipids were altered in 12% of PCa and >30% of lung, uterine, and ovarian cancers. These data suggest that the identified plasma (glyco)sphingolipids should be further validated for their association with aggressive PCa, suggesting that specific sphingolipids may be included in a diagnostic signature for PCa.


Subject(s)
Biomarkers, Tumor/blood , Glycosphingolipids/blood , Metabolomics , Prostatic Neoplasms/blood , Black or African American , Aged , Ceramides/blood , Humans , Lipidomics/methods , Male , Middle Aged , Prostate/metabolism , Prostate/pathology , Prostate-Specific Antigen/blood , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tandem Mass Spectrometry , White People/genetics
9.
Sci Rep ; 10(1): 18033, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093563

ABSTRACT

The blood-brain barrier (BBB) is an efficient barrier for molecules and drugs. Multicellular 3D spheroids display reproducible BBB features and functions. The spheroids used here were composed of six brain cell types: Astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes, and neurons. They form an in vitro BBB that regulates the transport of compounds into the spheroid. The penetration of fluorescent ultrasmall gold nanoparticles (core diameter 2 nm; hydrodynamic diameter 3-4 nm) across the BBB was studied as a function of time by confocal laser scanning microscopy, with the dissolved fluorescent dye (FAM-alkyne) as a control. The nanoparticles readily entered the interior of the spheroid, whereas the dissolved dye alone did not penetrate the BBB. We present a model that is based on a time-dependent opening of the BBB for nanoparticles, followed by a rapid diffusion into the center of the spheroid. After the spheroids underwent hypoxia (0.1% O2; 24 h), the BBB was more permeable, permitting the uptake of more nanoparticles and also of dissolved dye molecules. Together with our previous observations that such nanoparticles can easily enter cells and even the cell nucleus, these data provide evidence that ultrasmall nanoparticle can cross the blood brain barrier.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/administration & dosage , Models, Biological , Spheroids, Cellular/metabolism , Biological Transport , Cells, Cultured , Endothelial Cells/metabolism , Humans , Metal Nanoparticles/chemistry , Pericytes/metabolism
10.
Sci Rep ; 10(1): 15873, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985521

ABSTRACT

Humans have undergone intense evolutionary selection to optimize their capacity to generate necessary quantities of long chain (LC-) polyunsaturated fatty acid (PUFA)-containing lipids. To better understand the impact of genetic variation within a locus of three FADS genes (FADS1, FADS2, and FADS3) on a diverse family of lipids, we examined the associations of 247 lipid metabolites (including four major classes of LC-PUFA-containing molecules and signaling molecules) with common and low-frequency genetic variants located within the FADS locus. Genetic variation in the FADS locus was strongly associated (p < 1.2 × 10-8) with 52 LC-PUFA-containing lipids and signaling molecules, including free fatty acids, phospholipids, lyso-phospholipids, and an endocannabinoid. Notably, the majority (80%) of FADS-associated lipids were not significantly associated with genetic variants outside of this FADS locus. These findings highlight the central role genetic variation at the FADS locus plays in regulating levels of physiologically critical LC-PUFA-containing lipids that participate in innate immunity, energy homeostasis, and brain development/function.


Subject(s)
Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Lipid Metabolism/genetics , Metabolomics , Delta-5 Fatty Acid Desaturase , Humans , Polymorphism, Single Nucleotide
11.
Am J Clin Nutr ; 111(5): 1068-1078, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32167131

ABSTRACT

BACKGROUND: Unexplained heterogeneity in clinical trials has resulted in questions regarding the effectiveness of É£-linolenic acid (GLA)-containing botanical oil supplements. This heterogeneity may be explained by genetic variation within the fatty acid desaturase (FADS) gene cluster that is associated with circulating and tissue concentrations of arachidonic acid (ARA) and dihomo-É£-linolenic acid (DGLA), both of which may be synthesized from GLA and result in proinflammatory and anti-inflammatory metabolites, respectively. OBJECTIVES: The objective of this study was to prospectively compare the capacity of a non-Hispanic white cohort, stratified by FADS genotype at the key single-nucleotide polymorphism (SNP) rs174537, to metabolize 18-carbon omega-6 (n-6) PUFAs in borage oil (BO) and soybean oil (SO) to GLA, DGLA, and ARA. METHODS: Healthy adults (n = 64) participated in a randomized, double-blind, crossover intervention. Individuals received encapsulated BO (Borago officinalis L.; 37% LA and 23% GLA) or SO [Glycine max (L.) Merr.; 50% LA and 0% GLA] for 4 wk, followed by an 8-wk washout period, before consuming the opposite oil for 4 wk. Serum lipids and markers of inflammation (C-reactive protein) were assessed for both oil types at baseline and during weeks 2 and 4 of the intervention. RESULTS: SO supplementation failed to alter circulating concentrations of any n-6 long-chain PUFAs. In contrast, a modest daily dose of BO elevated serum concentrations of GLA and DGLA in an rs174537 genotype-dependent manner. In particular, DGLA increased by 57% (95% CI: 0.38, 0.79) in GG genotype individuals, but by 141% (95% CI: 1.03, 2.85) in TT individuals. For ARA, baseline concentrations varied substantially by genotype and increased modestly with BO supplementation, suggesting a key role for FADS variation in the balance of DGLA and ARA. CONCLUSIONS: The results of this study clearly suggest that personalized and population-based approaches considering FADS genetic variation may be necessary to optimize the design of future clinical studies with GLA-containing oils. This trial was registered at clinicaltrials.gov as NCT02337231.


Subject(s)
Fatty Acid Desaturases/genetics , Linoleic Acid/blood , Plant Oils/metabolism , Soybean Oil/metabolism , gamma-Linolenic Acid/blood , 8,11,14-Eicosatrienoic Acid/blood , Adult , Aged , Cohort Studies , Delta-5 Fatty Acid Desaturase , Double-Blind Method , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/blood , Female , Genotype , Humans , Lipids/blood , Male , Middle Aged , Polymorphism, Single Nucleotide , Prospective Studies , White People/genetics , Young Adult , gamma-Linolenic Acid/metabolism
12.
PLoS One ; 13(3): e0194610, 2018.
Article in English | MEDLINE | ID: mdl-29590160

ABSTRACT

Omega-6 (n-6) and omega-3 (n-3) long (≥ 20 carbon) chain polyunsaturated fatty acids (LC-PUFAs) play a critical role in human health and disease. Biosynthesis of LC-PUFAs from dietary 18 carbon PUFAs in tissues such as the liver is highly associated with genetic variation within the fatty acid desaturase (FADS) gene cluster, containing FADS1 and FADS2 that encode the rate-limiting desaturation enzymes in the LC-PUFA biosynthesis pathway. However, the molecular mechanisms by which FADS genetic variants affect LC-PUFA biosynthesis, and in which tissues, are unclear. The current study examined associations between common single nucleotide polymorphisms (SNPs) within the FADS gene cluster and FADS1 and FADS2 gene expression in 44 different human tissues (sample sizes ranging 70-361) from the Genotype-Tissue Expression (GTEx) Project. FADS1 and FADS2 expression were detected in all 44 tissues. Significant cis-eQTLs (within 1 megabase of each gene, False Discovery Rate, FDR<0.05, as defined by GTEx) were identified in 12 tissues for FADS1 gene expression and 23 tissues for FADS2 gene expression. Six tissues had significant (FDR< 0.05) eQTLs associated with both FADS1 and FADS2 (including artery, esophagus, heart, muscle, nerve, and thyroid). Interestingly, the identified eQTLs were consistently found to be associated in opposite directions for FADS1 and FADS2 expression. Taken together, findings from this study suggest common SNPs within the FADS gene cluster impact the transcription of FADS1 and FADS2 in numerous tissues and raise important questions about how the inverse expression of these two genes impact intermediate molecular (such a LC-PUFA and LC-PUFA-containing glycerolipid levels) and ultimately clinical phenotypes associated with inflammatory diseases and brain health.


Subject(s)
Fatty Acid Desaturases/genetics , Fatty Acids, Unsaturated/metabolism , Multigene Family , Organ Specificity , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Delta-5 Fatty Acid Desaturase , Gene Expression Regulation , Genotype , Humans
13.
Nutrients ; 9(11)2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29068398

ABSTRACT

BACKGROUND: Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. METHODS: This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. CONCLUSIONS: The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Noncommunicable Diseases/prevention & control , Diet , Fatty Acid Desaturases/blood , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/deficiency , Fatty Acids, Omega-6/administration & dosage , Fatty Acids, Omega-6/blood , Fatty Acids, Omega-6/deficiency , Humans , Inflammation/blood , Inflammation/prevention & control , Linoleic Acid/administration & dosage , Linoleic Acid/blood , Nutritional Status , alpha-Linolenic Acid/administration & dosage , alpha-Linolenic Acid/blood
14.
PLoS One ; 12(9): e0180903, 2017.
Article in English | MEDLINE | ID: mdl-28957329

ABSTRACT

Genetic variants near and within the fatty acid desaturase (FADS) cluster are associated with polyunsaturated fatty acid (PUFA) biosynthesis, levels of several disease biomarkers and risk of human disease. However, determining the functional mechanisms by which these genetic variants impact PUFA levels remains a challenge. Utilizing an Illumina 450K array, we previously reported strong allele-specific methylation (ASM) associations (p = 2.69×10-29) between a single nucleotide polymorphism (SNP) rs174537 and DNA methylation of CpG sites located in the putative enhancer region between FADS1 and FADS2, in human liver tissue. However, this array only featured 20 CpG sites within this 12kb region. To better understand the methylation landscape within this region, we conducted bisulfite sequencing of the region between FADS1 and FADS2. Liver tissues from 50 male subjects (27 European Americans, 23 African Americans) were obtained from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, and used to ascertain the genotype at rs174537 and methylation status across the region of interest. Associations between rs174537 genotype and methylation status of 136 CpG sites were determined. Age-adjusted linear regressions were used to assess ASM associations with rs174537 genotype. The majority of CpG sites (117 out of 136, 86%) exhibited high levels of methylation with the greatest variability observed at three key regulatory regions-the promoter regions for FADS1 and FADS2 and a putative enhancer site between the two genes. Eight CpG sites within the putative enhancer region displayed significant (FDR p <0.05) ASM associations with rs174537. These data support the concept that both genetic and epigenetic factors regulate PUFA biosynthesis, and raise fundamental questions as to how genetic variants such as rs174537 impact DNA methylation in distant regulatory regions, and ultimately the capacity of tissues to synthesize PUFAs.


Subject(s)
DNA Methylation/genetics , Fatty Acid Desaturases/genetics , Multigene Family , Regulatory Sequences, Nucleic Acid/genetics , Adult , Black or African American/genetics , CpG Islands/genetics , Delta-5 Fatty Acid Desaturase , Demography , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , White People/genetics
16.
Prostate ; 76(13): 1182-91, 2016 09.
Article in English | MEDLINE | ID: mdl-27197070

ABSTRACT

BACKGROUND: In vitro and experimental animal studies have demonstrated that high levels of omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and high ratios of n-6 to omega-3 (n-3) PUFAs are strongly associated with the development and progression of prostate cancer (PCA). However, epidemiological studies in humans have demonstrated inconsistent findings linking dietary PUFAs and PCA risk. We hypothesize that genetic and epigenetic variations within the fatty acid desaturase (FADS) gene cluster produce gene-diet interactions that may explain these disparate findings. This study tested the relationship of the genotype of a single nucleotide polymorphism, rs174537, and the methylation status of a CpG site, cg27386326, with PUFA composition, and markers of PUFA biosynthesis in PCA tissue. METHODS: Sixty PCA specimens from patients undergoing radical prostatectomy were genotyped, pyrosequenced and quantitated for fatty acids (FAs). RESULTS: Long-chain (LC)-PUFAs, such as arachidonic acid (ARA), were abundant in these specimens, with ARA accounting for 15.8% of total FAs. In addition, there was a positive association of the G allele at rs174537 with concentrations of ARA and adrenic acid and ratios of products to precursors within the n-6 PUFA pathway such that specimens from homozygous G individuals exhibited increasingly higher values as compared to specimens from heterozygous individuals and homozygous T individuals. Finally, the methylation status of cg27386326 was inversely correlated with tissue concentrations of LC-PUFAs and markers of LC-PUFA biosynthesis. CONCLUSIONS: These data reveal that genetic and epigenetic variations within the FADS cluster are highly associated with LC-PUFA concentrations and LC-PUFA biosynthetic capacity in PCA tissue. They also raise the potential that gene-PUFA interactions play an important role in PCA risk and severity. Prostate 76:1182-1191, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc.


Subject(s)
Epigenesis, Genetic/physiology , Fatty Acid Desaturases/genetics , Fatty Acids, Unsaturated/genetics , Genetic Variation/physiology , Multigene Family/physiology , Prostatic Neoplasms/genetics , Aged , Animals , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Male , Middle Aged , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/metabolism
17.
Physiol Behav ; 156: 71-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26705667

ABSTRACT

Deficiencies in omega-3 (n-3) long chain polyunsaturated fatty acids (LC-PUFAs) and increases in the ratio of omega-6 (n-6) to n-3 LC-PUFAs in brain tissues and blood components have been associated with psychiatric and developmental disorders. Most studies have focused on n-3 LC-PUFA accumulation in the brain from birth until 2years of age, well before the symptomatic onset of such disorders. The current study addresses changes that occur in childhood and adolescence. Postmortem brain (cortical gray matter, inferior temporal lobe; n=50) and liver (n=60) from vervet monkeys fed a uniform diet from birth through young adulthood were collected from archived tissues. Lipids were extracted and fatty acid levels determined. There was a marked reduction in the ratio of n-6 LC-PUFAs, arachidonic acid (ARA) and adrenic acid (ADR), relative to the n-3 LC-PUFA, docosahexaenoic acid (DHA), in temporal cortex lipids from birth to puberty and then a more gradual decrease though adulthood. This decrease in ratio resulted from a 3-fold accumulation of DHA levels while concentrations of ARA remained constant. Early childhood through adolescence appears to be a critical period for DHA accretion in the cortex of vervet monkeys and may represent a vulnerable stage where lack of dietary n-3 LC-PUFAs impacts development in humans.


Subject(s)
Chlorocebus aethiops/metabolism , Docosahexaenoic Acids/metabolism , Fatty Acids, Omega-6/metabolism , Liver/metabolism , Temporal Lobe/metabolism , Animals , Arachidonic Acid/metabolism , Chlorocebus aethiops/growth & development , Female , Male , Sexual Maturation
18.
PLoS One ; 9(5): e97510, 2014.
Article in English | MEDLINE | ID: mdl-24842322

ABSTRACT

Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20:4, n-6), eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18:2, n-6) to AA and α-linolenic acid (ALA, 18:3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5' to 5') in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼ 15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95 × 10(-46)) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.


Subject(s)
DNA Methylation/genetics , Fatty Acid Desaturases/genetics , Alleles , Delta-5 Fatty Acid Desaturase , Fatty Acids, Omega-6/metabolism , Humans , Linkage Disequilibrium/genetics , Liver/enzymology , Liver/metabolism , Polymorphism, Single Nucleotide , alpha-Linolenic Acid/metabolism
19.
Nutrients ; 6(5): 1993-2022, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24853887

ABSTRACT

The "modern western" diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.


Subject(s)
Diet , Fatty Acids, Omega-6/metabolism , Gene-Environment Interaction , Linoleic Acid/metabolism , Black or African American/genetics , Animals , Cardiovascular Diseases/genetics , Cardiovascular Diseases/prevention & control , Disease Models, Animal , Health Status Disparities , Humans , Risk Factors
20.
Am J Med Sci ; 343(6): 446-51, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22173044

ABSTRACT

INTRODUCTION: Secretory phospholipases A2 (sPLA2) hydrolyze phospholipids in cell membranes and extracellular structures such as pulmonary surfactant. This study tests the hypothesis that sPLA2 are elevated in human lungs during acute respiratory distress syndrome (ARDS) and that sPLA2 levels are associated with surfactant injury by hydrolysis of surfactant phospholipids. METHODS: Bronchoalveolar lavage (BAL) fluid was obtained from 18 patients with early ARDS (<72 hours) and compared with samples from 10 healthy volunteers. Secreted phospholipase A2 levels were measured (enzyme activity and enzyme immunoassay) in conjunction with ARDS subjects' surfactant abnormalities including surfactant phospholipid composition, large and small aggregates distribution and surface tension function. RESULTS: BAL sPLA2 enzyme activity was markedly elevated in ARDS samples relative to healthy subjects when measured by ex vivo hydrolysis of both phosphatidylglycerol (PG) and phosphatidylcholine (PC). Enzyme immunoassay identified increased PLA2G2A protein in the ARDS BAL fluid, which was strongly correlated with the sPLA2 enzyme activity against PG. Of particular interest, the authors demonstrated an average depletion of 69% of the PG in the ARDS sample large aggregates relative to the normal controls. Furthermore, the sPLA2 enzyme activity against PG and PC ex vivo correlated with the BAL recovery of in vivo PG and PC, respectively, and also correlated with the altered distribution of the large and small surfactant aggregates. CONCLUSIONS: These results support the hypothesis that sPLA2-mediated hydrolysis of surfactant phospholipid, especially PG by PLA2G2A, contributes to surfactant injury during early ARDS.


Subject(s)
Phosphatidylglycerols/metabolism , Phospholipases A2, Secretory/physiology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/metabolism , Bronchoalveolar Lavage Fluid , Early Diagnosis , Humans , Hydrolysis , Phosphatidylglycerols/deficiency , Pulmonary Surfactants/metabolism , Respiratory Distress Syndrome/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...