Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Lancet Glob Health ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39043199

ABSTRACT

Sexually transmitted infections (STIs) are widespread worldwide and negatively affect sexual and reproductive health. Gaps in evidence and in available tools have long hindered STI programmes and policies, particularly in resource-limited settings. In 2022, WHO initiated a research prioritisation process to identify the most important STI research areas to address the global public health need. Using an adapted Child Health and Nutrition Research Initiative methodology including two global stakeholder surveys, the process identified 40 priority STI research needs. The top priorities centred on developing and implementing affordable, feasible, rapid point-of-care STI diagnostic tests and new treatments, especially for gonorrhoea, chlamydia, and syphilis; designing new multipurpose prevention technologies and vaccines for STIs; and collecting improved STI epidemiologic data on both infection and disease outcomes. The priorities also included innovative programmatic approaches, such as new STI communication and partner management strategies. An additional six research areas related to mpox (formerly known as monkeypox) reflect the need for STI-related research during disease outbreaks where sexual transmission can have a key role. These STI research priorities provide a call to action for focus, investment, and innovation to address existing roadblocks in STI prevention, control, and management to advance sexual and reproductive health and wellbeing for all.

2.
J Infect Dis ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877763

ABSTRACT

While ceftriaxone remains the first-line treatment for gonorrhoea, the US CDC recommended cefixime as a second-line treatment in 2021. We tested 1176 Neisseria gonorrhoeae isolates among clients attending the Melbourne Sexual Health Centre in 2021-2022. The prevalence of cefixime resistance was 6.3% (74/1176), azithromycin resistance was 4.9% (58/1176) and ceftriaxone resistance was 0% (0/1176). Cefixime resistance was the highest among women (16.4%, 10/61), followed by men-who-have-sex-with-women (6.4%, 7/109), and men-who-have-sex-with-men (5.8%, 57/982). The prevalence of cefixime-resistant N. gonorrhoeae exceeds the threshold of the 5% resistance level recommended by the World Health Organization; and thus, cefixime treatment would have limited benefits in Australia.

3.
BMJ Open ; 14(4): e081675, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626958

ABSTRACT

INTRODUCTION: Gonorrhoea, the sexually transmissible infection caused by Neisseria gonorrhoeae, has a substantial impact on sexual and reproductive health globally with an estimated 82 million new infections each year worldwide. N. gonorrhoeae antimicrobial resistance continues to escalate, and disease control is largely reliant on effective therapy as there is no proven effective gonococcal vaccine available. However, there is increasing evidence from observational cohort studies that the serogroup B meningococcal vaccine four-component meningitis B vaccine (4CMenB) (Bexsero), licensed to prevent invasive disease caused by Neisseria meningitidis, may provide cross-protection against the closely related bacterium N. gonorrhoeae. This study will evaluate the efficacy of 4CMenB against N. gonorrhoeae infection in men (cis and trans), transwomen and non-binary people who have sex with men (hereafter referred to as GBM+). METHODS AND ANALYSIS: This is a double-blind, randomised placebo-controlled trial in GBM+, either HIV-negative on pre-exposure prophylaxis against HIV or living with HIV (CD4 count >350 cells/mm3), who have had a diagnosis of gonorrhoea or infectious syphilis in the last 18 months (a key characteristic associated with a high risk of N. gonorrhoeae infection). Participants are randomised 1:1 to receive two doses of 4CMenB or placebo 3 months apart. Participants have 3-monthly visits over 24 months, which include testing for N. gonorrhoeae and other sexually transmissible infections, collection of demographics, sexual behaviour risks and antibiotic use, and collection of research samples for analysis of N. gonorrhoeae-specific systemic and mucosal immune responses. The primary outcome is the incidence of the first episode of N. gonorrhoeae infection, as determined by nucleic acid amplification tests, post month 4. Additional outcomes consider the incidence of symptomatic or asymptomatic N. gonorrhoeae infection at different anatomical sites (ie, urogenital, anorectum or oropharynx), incidence by N. gonorrhoeae genotype and antimicrobial resistance phenotype, and level and functional activity of N. gonorrhoeae-specific antibodies. ETHICS AND DISSEMINATION: Ethical approval was obtained from the St Vincent's Hospital Human Research Ethics Committee, St Vincent's Hospital Sydney, NSW, Australia (ref: 2020/ETH01084). Results will be disseminated in peer-reviewed journals and via presentation at national and international conferences. TRIAL REGISTRATION NUMBER: NCT04415424.


Subject(s)
Anti-Infective Agents , Gonorrhea , HIV Infections , Meningococcal Infections , Meningococcal Vaccines , Sexual and Gender Minorities , Male , Humans , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Gonorrhea/drug therapy , Meningococcal Vaccines/therapeutic use , Meningococcal Infections/epidemiology , Homosexuality, Male , Neisseria gonorrhoeae/genetics , HIV Infections/drug therapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
4.
Vaccine ; 42(19S1): S70-S81, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38556390

ABSTRACT

An effective prophylactic vaccine for prevention of Neisseria gonorrhoeae infection would have a major impact on sexual and reproductive health worldwide. Interest in developing gonorrhoea vaccines is growing due to the reported high rates of N. gonorrhoeae infections globally, and the threat of antimicrobial resistance. Several gonorrhoea vaccine candidates are currently under evaluation and various mathematical models have been used to assess the potential population-level impact a gonorrhoea vaccine may have once available. Here we review key aspects of gonorrhoea vaccine mathematical modelling studies, including model structures, populations considered, and assumptions used as well as vaccine characteristics and implementation scenarios investigated. The predicted vaccine impact varied between studies, ranging from as little as ∼17 % reduction in N. gonorrhoeae prevalence after 30 years up to 100 % reduction after 5 years. However, all studies predicted that even a partially effective gonorrhoea vaccine could have a substantial impact in reducing N. gonorrhoeae prevalence or incidence, particularly when high coverage is achieved within either important risk groups or the overall sexually active population. As expected, higher vaccine efficacy against acquisition of N. gonorrhoeae and longer duration of protection were linked to greater reductions in infections. A vaccine that alters onward transmission could also substantially reduce infections. Several gaps and research needs have been identified by researchers in the field and via this narrative literature review. For example, future modelling to inform gonorrhoea vaccine development and implementation should consider additional populations that are at high risk of N. gonorrhoeae infection, especially in low- and middle-income settings, as well as the impact of vaccination on the potential adverse sexual and reproductive health outcomes of infection. In addition, more detailed and robust epidemiological, biological, and behavioural data is needed to enable more accurate and robust modelling of gonorrhoea vaccine impact to inform future scientific and public health decision-making.


Subject(s)
Bacterial Vaccines , Gonorrhea , Models, Theoretical , Neisseria gonorrhoeae , Gonorrhea/prevention & control , Gonorrhea/epidemiology , Gonorrhea/immunology , Humans , Neisseria gonorrhoeae/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Vaccine Development , Prevalence , Vaccine Efficacy
5.
Clin Microbiol Rev ; 37(1): e0009423, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38226640

ABSTRACT

Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.


Subject(s)
Anti-Infective Agents , Gonorrhea , Vaccines , Infant, Newborn , Humans , Neisseria gonorrhoeae , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/prevention & control
6.
Vaccine ; 42(19S1): S42-S69, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38123397

ABSTRACT

Neisseria gonorrhoeae infection (gonorrhoea) is a global public health challenge, causing substantial sexual and reproductive health consequences, such as infertility, pregnancy complications and increased acquisition or transmission of HIV. There is an urgency to controlling gonorrhoea because of increasing antimicrobial resistance to ceftriaxone, the last remaining treatment option, and the potential for gonorrhoea to become untreatable. No licensed gonococcal vaccine is available. Mounting observational evidence suggests that N. meningitidis serogroup B outer membrane vesicle-based vaccines may induce cross-protection against N. gonorrhoeae (estimated 30%-40% effectiveness using the 4CMenB vaccine). Clinical trials to determine the efficacy of the 4CMenB vaccine against N. gonorrhoeae are underway, as are Phase 1/2 studies of a new gonococcal-specific vaccine candidate. Ultimately, a gonococcal vaccine must be accessible, affordable and equitably dispensed, given that those most affected by gonorrhoea are also those who may be most disadvantaged in our societies, and most cases are in less-resourced settings. This vaccine value profile (VVP) provides a high level, holistic assessment of the current data to inform the potential public health, economic and societal value of pipeline vaccines. This was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships and multi-lateral organizations. All contributors have extensive expertise on various elements of the N. gonorrhoeae VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using published data obtained from peer-reviewed journals or reports.


Subject(s)
Bacterial Vaccines , Gonorrhea , Neisseria gonorrhoeae , Humans , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Cross Protection/immunology , Gonorrhea/prevention & control , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/drug effects
7.
Vaccine ; 41(38): 5553-5561, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37517908

ABSTRACT

BACKGROUND: Treatment of Neisseria gonorrhoeae is under threat with the emergence and spread of antimicrobial resistance. Thus, there is a growing interest in the development of a gonorrhoea vaccine. We used mathematical modelling to assess the impact of a hypothetical vaccine in controlling gonorrhoea among heterosexuals living in a setting of relatively high N. gonorrhoeae prevalence (∼3 %). METHODS: We developed a mathematical model of N. gonorrhoeae transmission among 15-49-year-old heterosexuals, stratified by age and sex, and calibrated to prevalence and sexual behaviour data from South Africa as an example of a high prevalence setting for which we have data available. Using this model, we assessed the potential impact of a vaccine on N. gonorrhoeae prevalence in the entire population. We considered gonorrhoea vaccines having differing impacts on N. gonorrhoeae infection and transmission and offered to different age-groups. RESULTS: The model predicts that N. gonorrhoeae prevalence can be reduced by ∼50 % in 10 years following introduction of a vaccine if annual vaccination uptake is 10 %, vaccine efficacy against acquisition of infection is 25 % and duration of protection is 5 years, with vaccination available to the entire population of 15-49-year-olds. If only 15-24-year-olds are vaccinated, the predicted reduction in prevalence in the entire population is 25 % with equivalent vaccine characteristics and uptake. Although predicted reductions in prevalence for vaccination programmes targeting only high-activity individuals and the entire population are similar over the same period, vaccinating only high-activity individuals is more efficient as the cumulative number of vaccinations needed to reduce prevalence in the entire population by 50 % is ∼3 times lower for this programme. CONCLUSION: Provision of a gonorrhoea vaccine could lead to substantial reductions in N. gonorrhoeae prevalence in a high prevalence heterosexual setting, even with moderate annual vaccination uptake of a vaccine with partial efficacy.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Humans , Adolescent , Young Adult , Adult , Middle Aged , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Heterosexuality , Prevalence , Bacterial Vaccines
8.
BMC Public Health ; 23(1): 607, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997957

ABSTRACT

BACKGROUND: Gonorrhoea is an ongoing public health concern due to its rising incidence and the emergence of antibiotic resistance. There are an estimated 82 million new Neisseria gonorrhoeae infections each year, with several populations at higher risk for gonococcal infection, including gay and bisexual men (GBM). If left untreated, infection can lead to serious morbidity including infertility, sepsis and increased risk of HIV acquisition. Development of a gonorrhoea vaccine has been challenging, however there is observational evidence that serogroup B meningococcal vaccines, used to protect against the closely related bacteria Neisseria meningitidis, could provide cross-protection against N. gonorrhoeae. METHODS: The MenGO (Meningococcal vaccine efficacy against Gonorrhoea) study is a phase III open-label randomised control trial in GBM to evaluate the efficacy of the four-component meningococcal serogroup B vaccine, 4CMenB, against gonorrhoea. A total of 130 GBM will be recruited at the Gold Coast Sexual Health Clinic, Australia, and randomised to either receive 2 doses of 4CMenB or no intervention. Participants will be followed up for 24 months with testing for N. gonorrhoeae and other sexually transmissible infections every three months. Demographics, sexual behaviour risk, antibiotic use, and blood samples for analysis of N. gonorrhoeae-specific immune responses, will be collected during the study. The primary outcome is the number of N. gonorrhoeae infections in participants over 2 years measured by nucleic acid amplification test (NAAT). Secondary outcomes are vaccine-induced N. gonorrhoeae-specific immune responses, and adverse events in trial participants. DISCUSSION: This trial will determine if the 4CMenB vaccine is able to reduce N. gonorrhoeae infection. If shown to be effective, 4CMenB could be used in gonococcal prevention. Analysis of 4CMenB-induced immune responses will increase understanding of the type of immune response needed to prevent N. gonorrhoeae, which may enable identification of a potential correlate of protection to aid future gonorrhoea vaccine development. TRIAL REGISTRATION: The trial has been registered on the Australian and New Zealand Clinical Trials Registry (ACTRN12619001478101) on 25 October 2019.


Subject(s)
Gonorrhea , Meningococcal Infections , Meningococcal Vaccines , Sexual and Gender Minorities , Humans , Male , Australia/epidemiology , Clinical Trials, Phase III as Topic , Gonorrhea/prevention & control , Meningococcal Infections/prevention & control , Meningococcal Vaccines/therapeutic use , Neisseria gonorrhoeae , Neisseria meningitidis, Serogroup B , Randomized Controlled Trials as Topic , Serogroup , Sexual Behavior
9.
Front Cell Infect Microbiol ; 12: 909888, 2022.
Article in English | MEDLINE | ID: mdl-35846739

ABSTRACT

Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.


Subject(s)
Manganese , Neisseria meningitidis , Acclimatization , Copper/toxicity , Homeostasis , Humans , Ions , Manganese/toxicity , Metals , Neisseria , Neisseria gonorrhoeae , Zinc/toxicity
10.
Methods Mol Biol ; 2414: 363-372, 2022.
Article in English | MEDLINE | ID: mdl-34784046

ABSTRACT

There is no vaccine available to prevent Neisseria gonorrhoeae infection, however there is currently a high level of interest in developing gonococcal vaccines due to the increasing number of cases and continuing emergence of antimicrobial resistance worldwide. A key aspect of vaccine development is the investigation of the functional immune response raised to the vaccine targets under investigation. Here, we describe two assays used to assess the functional immune response raised against gonococcal vaccine targets: the serum bactericidal assay (SBA) and the opsonophagocytic assay (OPA).


Subject(s)
Gonorrhea , Antibodies, Bacterial , Bacterial Vaccines , Blood Bactericidal Activity , Gonorrhea/prevention & control , Humans , Neisseria gonorrhoeae/immunology
11.
J Infect Dis ; 225(6): 983-993, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34894134

ABSTRACT

BACKGROUND: A gonococcal vaccine is urgently needed due to increasing gonorrhea incidence and emerging multidrug-resistant gonococcal strains worldwide. Men who have sex with men (MSM) have among the highest incidences of gonorrhea and may be a key target population for vaccination when available. METHODS: An individual-based, anatomical site-specific mathematical model was used to simulate Neisseria gonorrhoeae transmission in a population of 10 000 MSM. The impact of vaccination on gonorrhea prevalence was assessed. RESULTS: With a gonococcal vaccine of 100% or 50% protective efficacy, gonorrhea prevalence could be reduced by 94% or 62%, respectively, within 2 years if 30% of MSM are vaccinated on presentation for sexually transmitted infection (STI) testing. Elimination of gonorrhea is possible within 8 years with vaccines of ≥ 50% efficacy lasting 2 years, providing a booster vaccination is available every 3 years on average. A vaccine's impact may be reduced if it is not effective at all anatomical sites. CONCLUSIONS: Our study indicates that with a vaccine of modest efficacy and an immunization strategy that targets MSM presenting for STI screening, the prevalence of gonorrhea in this population could be rapidly and substantially reduced.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Bacterial Vaccines , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Homosexuality, Male , Humans , Incidence , Male , Neisseria gonorrhoeae
12.
Antimicrob Agents Chemother ; 66(1): e0154221, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34633841

ABSTRACT

Neisseria gonorrhoeae is an increasing public health threat due to its rapidly rising incidence and antibiotic resistance. There are an estimated 106 million cases per year worldwide, there is no vaccine available to prevent infection, and N. gonorrhoeae strains that are resistant to all antibiotics routinely used to treat the infection have emerged. In many strains, antibiotic resistance is mediated by overexpression of the MtrCDE efflux pump, which enables the bacteria to transport toxic antibiotics out of the cell. Genetic mutations that inactivate MtrCDE have previously been shown to render resistant strains susceptible to certain antibiotics. Here, we show that peptides rationally designed to target and disrupt the activity of each of the three protein components of MtrCDE were able to increase the susceptibility of N. gonorrhoeae strains to antibiotics in a dose-dependent manner and with no toxicity to human cells. Cotreatment of bacteria with subinhibitory concentrations of the peptide led to 2- to 64-fold increases in susceptibility to erythromycin, azithromycin, ciprofloxacin, and/or ceftriaxone in N. gonorrhoeae strains FA1090, WHO K, WHO P, and WHO X. The cotreatment experiments with peptides P-MtrC1 and P-MtrE1 resulted in increased susceptibilities of WHO P and WHO X to azithromycin, ciprofloxacin, and ceftriaxone that were of the same magnitude seen in MtrCDE mutants. P-MtrE1 was able to change the azithromycin resistance profile of WHO P from resistant to susceptible. Data presented here demonstrate that these peptides may be developed for use as a dual treatment with existing antibiotics to treat multidrug-resistant gonococcal infections.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Gonorrhea/drug therapy , Gonorrhea/microbiology , Humans , Microbial Sensitivity Tests , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Peptides/metabolism , Peptides/pharmacology , Repressor Proteins/genetics
14.
NPJ Vaccines ; 6(1): 130, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34716336

ABSTRACT

Infections with Neisseria meningitidis and Neisseria gonorrhoeae have different clinical manifestations, but the bacteria share up to 80-90% genome sequence identity. The recombinant meningococcal serogroup B (MenB) vaccine 4CMenB consists of four antigenic components that can be present in non-B meningococcal and gonococcal strains. This comprehensive review summarizes scientific evidence on the genotypic and phenotypic similarities between vaccine antigens and their homologs expressed by non-B meningococcal and gonococcal strains. It also includes immune responses of 4CMenB-vaccinated individuals and effectiveness and impact of 4CMenB against these strains. Varying degrees of strain coverage were estimated depending on the non-B meningococcal serogroup and antigenic repertoire. 4CMenB elicits immune responses against non-B meningococcal serogroups and N. gonorrhoeae. Real-world evidence showed risk reductions of 69% for meningococcal serogroup W clonal complex 11 disease and 40% for gonorrhea after 4CMenB immunization. In conclusion, functional antibody activity and real-world evidence indicate that 4CMenB has the potential to provide some protection beyond MenB disease.

15.
mBio ; 12(2)2021 03 23.
Article in English | MEDLINE | ID: mdl-33758087

ABSTRACT

The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea.IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.


Subject(s)
Gonorrhea/prevention & control , Lipopolysaccharides/metabolism , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/genetics , Sialyltransferases/genetics , Sialyltransferases/metabolism , Antigens, Bacterial/analysis , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Vaccines , Cervix Uteri/microbiology , Epithelial Cells/microbiology , Female , Humans , Lipopolysaccharides/genetics , Lipopolysaccharides/immunology , N-Acetylneuraminic Acid/metabolism , Neisseria gonorrhoeae/pathogenicity , Neutrophils/immunology , Neutrophils/microbiology , Phagocytosis/immunology , beta-Galactoside alpha-2,3-Sialyltransferase
16.
J Mol Biol ; 432(21): 5835-5842, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32896529

ABSTRACT

Phase-variable DNA methyltransferases (Mods) mediate epigenetic regulation of gene expression. These phase-variable regulons, called phasevarions, have been shown to regulate virulence and immunoevasion in multiple bacterial pathogens. How genome methylation switching mediates gene regulation is unresolved. Neisseria meningitidis remains a major cause of sepsis and meningitis worldwide. Previously, we reported that phase variation (rapid on/off switching) of the meningococcal ModA11 methyltransferase regulates 285 genes. Here we show a bioinformatic analysis that reveals only 26 of the regulated genes have a methylation site located upstream of the gene with potential for direct effect of methylation on transcription. To investigate how methylation changes are "read" to alter gene expression, we used a lacZ gene fusion approach. We showed a 182-nucleotide region upstream of the eda gene (Entner-Doudoroff aldolase) is sufficient to impart methylation-dependent regulation of eda. Site-directed mutagenesis of the 5'-ACGTm6AGG-3' ModA11 site upstream of the eda gene showed that methylation of this site modulates eda expression. We show that eda is regulated by the PhoB homolog MisR, and that a MisR binding motif overlaps with the ModA11 methylation site. In a MisR mutant, regulation of eda is uncoupled from regulation by ModA11 phasevarion switching. The on/off switching of ModA11 leads to the presence or absence of a N6-methyladenine modification at thousands of sites in the genome. Most of these modifications have no impact on gene regulation. Moreover, the majority of the 285 gene regulon that is controlled by ModA11 phasevarion switching (259/285) are not directly controlled by methylation changes in the promoter region of the regulated genes. Our data are consistent with direct control via methylation of a subset of the regulon, like Eda, whose regulation will trigger secondary effects in expression of many genes.


Subject(s)
Bacterial Proteins/genetics , DNA Modification Methylases/genetics , Fructose-Bisphosphate Aldolase/genetics , Gene Expression Regulation, Bacterial , Neisseria meningitidis/genetics , DNA Methylation , Epigenesis, Genetic , Humans , Meningitis, Meningococcal/microbiology , Promoter Regions, Genetic
17.
Annu Rev Microbiol ; 74: 655-671, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32689914

ABSTRACT

Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.


Subject(s)
Bacteria/genetics , Bacteria/pathogenicity , Epigenesis, Genetic , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Immune Evasion , DNA Methylation , DNA Restriction-Modification Enzymes/genetics , DNA Restriction-Modification Enzymes/metabolism , Humans , Regulon , Virulence
18.
PLoS One ; 15(6): e0234306, 2020.
Article in English | MEDLINE | ID: mdl-32555615

ABSTRACT

Moraxella catarrhalis is a human-adapted, opportunistic bacterial pathogen of the respiratory mucosa. Although asymptomatic colonization of the nasopharynx is common, M. catarrhalis can ascend into the middle ear, where it is a prevalent causative agent of otitis media in children, or enter the lower respiratory tract, where it is associated with acute exacerbations of chronic obstructive pulmonary disease in adults. Phase variation is the high frequency, random, reversible switching of gene expression that allows bacteria to adapt to different host microenvironments and evade host defences, and is most commonly mediated by simple DNA sequence repeats. Bioinformatic analysis of five closed M. catarrhalis genomes identified 17 unique simple DNA sequence repeat tracts that were variable between strains, indicating the potential to mediate phase variable expression of the associated genes. Assays designed to assess simple sequence repeat variation under conditions mimicking host infection demonstrated that phase variation of uspA1 (ubiquitous surface protein A1) from high to low expression occurs over 72 hours of biofilm passage, while phase variation of uspA2 (ubiquitous surface protein A2) to high expression variants occurs during repeated exposure to human serum, as measured by mRNA levels. We also identify and confirm the variable expression of two novel phase variable genes encoding a Type III DNA methyltransferase (modO), and a conserved hypothetical permease (MC25239_RS00020). These data reveal the repertoire of phase variable genes mediated by simple sequence repeats in M. catarrhalis and demonstrate that modulation of expression under conditions mimicking human infection is attributed to changes in simple sequence repeat length.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Moraxella catarrhalis/genetics , Bacterial Adhesion/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Gene Expression/genetics , Humans , Microsatellite Repeats/genetics , Moraxella catarrhalis/pathogenicity , Moraxellaceae Infections , Otitis Media/microbiology , Repetitive Sequences, Nucleic Acid/genetics
19.
Vaccines (Basel) ; 8(2)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414194

ABSTRACT

Due to the continuing emergence of multidrug resistant strains of Neisseria gonorrhoeae there is an urgent need for the development of a gonococcal vaccine. We evaluated the gonococcal Neisseria heparin binding antigen (NHBA) as a potential vaccine candidate, in terms of its sequence conservation and expression in a range of N. gonorrhoeae strains, as well as its immunogenicity and the functional activity of antibodies raised to either the full length NHBA or a C-terminal fragment of NHBA (NHBA-c). The gene encoding NHBA is highly conserved and expressed in all N. gonorrhoeae strains investigated. Recombinant NHBA is immunogenic, and mice immunized with either NHBA or NHBA-c adjuvanted with either Freund's or aluminium hydroxide (alum) generated a humoral immune response, with predominantly IgG1 antibodies. Antibodies generated by both NHBA and NHBA-c antigens promoted complement activation and mediated bacterial killing via both serum bactericidal activity and opsonophagocytic activity, with slightly higher titers seen for the NHBA-c antigen. Anti-NHBA was also able to block the functional activity of NHBA by reducing binding to heparin and adherence to cervical and urethral epithelial cells. These data suggest that the gonococcal NHBA is a promising vaccine antigen to include in a vaccine to control N. gonorrhoeae.

20.
Vaccine ; 38(28): 4362-4373, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32359875

ABSTRACT

Renewed interest in developing vaccines against Neisseria gonorrhoeae has been sparked by the increasing threat of gonococcal antimicrobial resistance (AMR) and growing optimism that gonococcal vaccines are biologically feasible. Evidence suggests serogroup B Neisseria meningitidis vaccines might provide some cross-protection against N. gonorrhoeae, and new gonococcal vaccine candidates based on several approaches are currently in preclinical development. To further stimulate investment and accelerate development of gonococcal vaccines, greater understanding is needed regarding the overall value that gonococcal vaccines might have in addressing public health and societal goals in low-, middle-, and high-income country contexts and how future gonococcal vaccines might be accepted and used, if available. In January 2019, the World Health Organization (WHO) convened a multidisciplinary international group of experts to lay the groundwork for understanding the potential health, economic, and societal value of gonococcal vaccines and their likely acceptance and use, and for developing gonococcal vaccine preferred product characteristics (PPCs). WHO PPCs describe preferences for vaccine attributes that would help optimize vaccine value and use in meeting the global public health need. This paper describes the main discussion points and conclusions from the January 2019 meeting of experts. Participants emphasized the need for vaccines to control N. gonorrhoeae infections with the ultimate goals of preventing adverse sexual and reproductive health outcomes (e.g., infertility) and reducing the impact of gonococcal AMR. Meeting participants also discussed important PPC considerations (e.g., vaccine indications, target populations, and potential immunization strategies) and highlighted crucial research and data needs for guiding the value assessment and PPCs for gonococcal vaccines and advancing gonococcal vaccine development.


Subject(s)
Gonorrhea , Public Health , Anti-Bacterial Agents , Gonorrhea/prevention & control , Humans , Neisseria gonorrhoeae , Referral and Consultation , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL