Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Eur J Endocrinol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38917410

ABSTRACT

OBJECTIVE: Brown adipose tissue (BAT) is a therapeutic target for obesity. 18F-Fluorodeoxyglucose positron emission tomography (18F-FDG-PET) is commonly used to quantify human BAT mass and activity. Detectable 18F-FDG uptake by BAT is associated with reduced prevalence of cardiometabolic disease. However, 18F-FDG uptake may not always be a reliable marker of BAT thermogenesis, for example insulin resistance may reduce glucose uptake. Uncoupling protein 1 (UCP1) is the key thermogenic protein in BAT. Therefore, we hypothesized that UCP1 expression may be altered in individuals with cardiometabolic risk factors. METHODS: We quantified UCP1 expression as an alternative marker of thermogenic capacity in BAT and white adipose tissue (WAT) samples (n = 53) and in differentiated brown and white pre-adipocytes (n = 85). RESULTS: UCP1 expression in BAT, but not in WAT or brown/white differentiated pre-adipocytes, was reduced with increasing age, obesity and adverse cardiometabolic risk factors such as fasting glucose, insulin and blood pressure. However, UCP1 expression in BAT was preserved in obese subjects of <40 years of age. To determine if BAT activity was also preserved in vivo, we undertook a case-control study, performing 18F-FDG scanning during mild cold exposure in young (mean age ∼22y) normal weight and obese volunteers. 18F-FDG uptake by BAT and BAT volume were similar between groups, despite increased insulin resistance. CONCLUSION: 18F-FDG uptake by BAT and UCP1 expression are preserved in young obese adults. Older subjects retain precursor cells with the capacity to form new thermogenic adipocytes. These data highlight the therapeutic potential of BAT mass expansion and activation in obesity.

2.
Phys Med Biol ; 69(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38648788

ABSTRACT

Objective.Training deep learning models for image registration or segmentation of dynamic contrast enhanced (DCE) MRI data is challenging. This is mainly due to the wide variations in contrast enhancement within and between patients. To train a model effectively, a large dataset is needed, but acquiring it is expensive and time consuming. Instead, style transfer can be used to generate new images from existing images. In this study, our objective is to develop a style transfer method that incorporates spatio-temporal information to either add or remove contrast enhancement from an existing image.Approach.We propose a temporal image-to-image style transfer network (TIST-Net), consisting of an auto-encoder combined with convolutional long short-term memory networks. This enables disentanglement of the content and style latent spaces of the time series data, using spatio-temporal information to learn and predict key structures. To generate new images, we use deformable and adaptive convolutions which allow fine grained control over the combination of the content and style latent spaces. We evaluate our method, using popular metrics and a previously proposed contrast weighted structural similarity index measure. We also perform a clinical evaluation, where experts are asked to rank images generated by multiple methods.Main Results.Our model achieves state-of-the-art performance on three datasets (kidney, prostate and uterus) achieving an SSIM of 0.91 ± 0.03, 0.73 ± 0.04, 0.88 ± 0.04 respectively when performing style transfer between a non-enhanced image and a contrast-enhanced image. Similarly, SSIM results for style transfer from a contrast-enhanced image to a non-enhanced image were 0.89 ± 0.03, 0.82 ± 0.03, 0.87 ± 0.03. In the clinical evaluation, our method was ranked consistently higher than other approaches.Significance.TIST-Net can be used to generate new DCE-MRI data from existing images. In future, this may improve models for tasks such as image registration or segmentation by allowing small training datasets to be expanded.


Subject(s)
Contrast Media , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Male , Time Factors , Deep Learning , Prostatic Neoplasms/diagnostic imaging
4.
EClinicalMedicine ; 60: 101995, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37251622

ABSTRACT

Background: Heavy menstrual bleeding affects one in four women and negatively impacts quality of life. Ulipristal acetate is prescribed to treat symptoms associated with uterine fibroids. We compared the effectiveness of ulipristal acetate and the levonorgestrel-releasing intrauterine system at reducing the burden of heavy menstrual bleeding, irrespective of the presence of fibroids. Methods: This randomised, open-label, parallel group phase III trial enrolled women over 18 years with heavy menstrual bleeding from 10 UK hospitals. Participants were centrally randomised, in a 1:1 ratio, to either three, 12-week treatment cycles of 5 mg ulipristal acetate daily, separated by 4-week treatment-free intervals, or a levonorgestrel-releasing intrauterine system. The primary outcome, analysed by intention-to-treat, was quality of life measured by the Menorrhagia Multi-Attribute Scale at 12 months. Secondary outcomes included menstrual bleeding and liver function. The trial is registered with ISRCTN, 20426843. Findings: Between June 5th, 2015 and February 26th, 2020, 236 women were randomised, either side of a recruitment suspension due to concerns of ulipristal acetate hepatoxicity. Subsequent withdrawal of ulipristal acetate led to early cessation of recruitment but the trial continued in follow-up. The primary outcome substantially improved in both groups, and was 89, (interquartile range [IQR] 65 to 100, n = 53) and 94, (IQR 70 to 100, n = 50; adjusted odds ratio 0.55, 95% confidence interval [CI] 0.26-1.17; p = 0.12) in the ulipristal and levonorgestrel-releasing intrauterine system groups. Rates of amenorrhoea at 12 months were higher in those allocated ulipristal acetate compared to levonorgestrel-releasing intrauterine system (64% versus 25%, adjusted odds ratio 7.12, 95% CI 2.29-22.2). Other outcomes were similar between the two groups and there were no cases of endometrial malignancy or hepatotoxicity due to ulipristal acetate use. Interpretation: Our findings suggested that both treatments improved quality of life. Ulipristal was more effective at inducing amenorrhoea. Ulipristal has been demonstrated to be an effective medical therapeutic option but currently its use has restrictions and requires liver function monitoring. Funding: UK Medical Research Council and National Institute of Health Research EME Programme (12/206/52).

5.
J Magn Reson Imaging ; 57(4): 1011-1028, 2023 04.
Article in English | MEDLINE | ID: mdl-36314991

ABSTRACT

Manganese-based contrast media were the first in vivo paramagnetic agents to be used in magnetic resonance imaging (MRI). The uniqueness of manganese lies in its biological function as a calcium channel analog, thus behaving as an intracellular contrast agent. Manganese ions are taken up by voltage-gated calcium channels in viable tissues, such as the liver, pancreas, kidneys, and heart, in response to active calcium-dependent cellular processes. Manganese-enhanced magnetic resonance imaging (MEMRI) has therefore been used as a surrogate marker for cellular calcium handling and interest in its potential clinical applications has recently re-emerged, especially in relation to assessing cellular viability and myocardial function. Calcium homeostasis is central to myocardial contraction and dysfunction of myocardial calcium handling is present in various cardiac pathologies. Recent studies have demonstrated that MEMRI can detect the presence of abnormal myocardial calcium handling in patients with myocardial infarction, providing clear demarcation between the infarcted and viable myocardium. Furthermore, it can provide more subtle assessments of abnormal myocardial calcium handling in patients with cardiomyopathies and being excluded from areas of nonviable cardiomyocytes and severe fibrosis. As such, MEMRI offers exciting potential to improve cardiac diagnoses and provide a noninvasive measure of myocardial function and contractility. This could be an invaluable tool for the assessment of both ischemic and nonischemic cardiomyopathies as well as providing a measure of functional myocardial recovery, an accurate prediction of disease progression and a method of monitoring treatment response. EVIDENCE LEVEL: 5: TECHNICAL EFFICACY: STAGE 5.


Subject(s)
Cardiomyopathies , Manganese , Humans , Calcium , Magnetic Resonance Imaging/methods , Contrast Media , Myocytes, Cardiac
6.
Circulation ; 146(24): 1823-1835, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36317524

ABSTRACT

BACKGROUND: Takotsubo syndrome is an acute cardiac emergency characterized by transient left ventricular systolic dysfunction typically following a stressful event. Despite its rapidly rising incidence, its pathophysiology remains poorly understood. Takotsubo syndrome may pass unrecognized, especially if timely diagnostic imaging is not performed. Defective myocardial calcium homeostasis is a central cause of contractile dysfunction and has not been explored in takotsubo syndrome. We aimed to investigate myocardial calcium handling using manganese-enhanced magnetic resonance imaging during the acute and recovery phases of takotsubo syndrome. METHODS: Twenty patients with takotsubo syndrome (63±12 years of age; 90% female) and 20 volunteers matched on age, sex, and cardiovascular risk factors (59±11 years of age; 70% female) were recruited from the Edinburgh Heart Centre between March 2020 and October 2021. Patients underwent gadolinium and manganese-enhanced magnetic resonance imaging during index hospitalization with repeat manganese-enhanced magnetic resonance imaging performed after at least 3 months. RESULTS: Compared with matched control volunteers, patients had a reduced left ventricular ejection fraction (51±11 versus 67±8%; P<0.001), increased left ventricular mass (86±11 versus 57±14 g/m2; P<0.001), and, in affected myocardial segments, elevated native T1 (1358±49 versus 1211±28 ms; P<0.001) and T2 (60±7 versus 38±3 ms; P<0.0001) values at their index presentation. During manganese-enhanced imaging, kinetic modeling demonstrated a substantial reduction in myocardial manganese uptake (5.1±0.5 versus 8.2±1.1 mL/[100 g of tissue ·min], respectively; P<0.0001), consistent with markedly abnormal myocardial calcium handling. After recovery, left ejection fraction, left ventricular mass, and T2 values were comparable with those of matched control volunteers. Despite this, native and postmanganese T1 and myocardial manganese uptake remained abnormal compared with matched control volunteers (6.6±0.5 versus 8.2±1.1 mL/[100 g of tissue ·min]; P<0.0001). CONCLUSIONS: In patients with takotsubo syndrome, there is a profound perturbation of myocardial manganese uptake, which is most marked in the acute phase but persists for at least 3 months despite apparent restoration of normal left ventricular ejection fraction and resolution of myocardial edema, suggesting abnormal myocardial calcium handling may be implicated in the pathophysiology of takotsubo syndrome. Manganese-enhanced magnetic resonance imaging has major potential to assist in the diagnosis, characterization, and risk stratification of patients with takotsubo syndrome. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04623788.


Subject(s)
Takotsubo Cardiomyopathy , Humans , Female , Middle Aged , Aged , Male , Takotsubo Cardiomyopathy/diagnostic imaging , Stroke Volume , Ventricular Function, Left/physiology , Manganese , Calcium , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine/methods
7.
EJNMMI Res ; 12(1): 33, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35666397

ABSTRACT

BACKGROUND: Aortic microcalcification activity is a recently described method of measuring aortic sodium [18F]fluoride uptake in the thoracic aorta on positron emission tomography. In this study, we aimed to compare and to modify this method for use within the infrarenal aorta of patients with abdominal aortic aneurysms. METHODS: Twenty-five patients with abdominal aortic aneurysms underwent an sodium [18F]fluoride positron emission tomography and computed tomography scan. Maximum and mean tissue-to-background ratios (TBR) and abdominal aortic microcalcification activity were determined following application of a thresholding and variable radius method to correct for vertebral sodium [18F]fluoride signal spill-over and the nonlinear changes in aortic diameter, respectively. Agreement between the methods, and repeatability of these approaches were assessed. RESULTS: The aortic microcalcification activity method was much quicker to perform than the TBR method (14 versus 40 min, p < 0.001). There was moderate-to-good agreement between TBR and aortic microcalcification activity measurements for maximum (interclass correlation co-efficient, 0.67) and mean (interclass correlation co-efficient, 0.88) values. These correlations sequentially improved with the application of thresholding (intraclass correlation coefficient 0.93, 95% confidence interval 0.89-0.95) and variable diameter (intraclass correlation coefficient 0.97, 95% confidence interval 0.94-0.99) techniques. The optimised method had good intra-observer (mean 1.57 ± 0.42, bias 0.08, co-efficient of repeatability 0.36 and limits of agreement - 0.43 to 0.43) and inter-observer (mean 1.57 ± 0.42, bias 0.08, co-efficient of repeatability 0.47 and limits of agreement - 0.53 to 0.53) repeatability. CONCLUSIONS: Aortic microcalcification activity is a quick and simple method which demonstrates good intra-observer and inter-observer repeatabilities and provides measures of sodium [18F]fluoride uptake that are comparable to established methods.

8.
Radiology ; 305(1): 137-148, 2022 10.
Article in English | MEDLINE | ID: mdl-35670715

ABSTRACT

Background MRI and fluorine 18-labeled sodium fluoride (18F-NaF) PET can be used to identify features of plaque instability, rupture, and disease activity, but large studies have not been performed. Purpose To evaluate the association between 18F-NaF activity and culprit carotid plaque in acute neurovascular syndrome. Materials and Methods In this prospective observational cohort study (October 2017 to January 2020), participants underwent 18F-NaF PET/MRI. An experienced clinician determined the culprit carotid artery based on symptoms and record review. 18F-NaF uptake was quantified using standardized uptake values and tissue-to-background ratios. Statistical significance was assessed with the Welch, χ2, Wilcoxon, or Fisher test. Multivariable models were used to evaluate the relationship between the imaging markers and the culprit versus nonculprit vessel. Results A total of 110 participants were evaluated (mean age, 68 years ± 10 [SD]; 70 men and 40 women). Of the 110, 34 (32%) had prior cerebrovascular disease, and 26 (24%) presented with amaurosis fugax, 54 (49%) with transient ischemic attack, and 30 (27%) with stroke. Compared with nonculprit carotids, culprit carotids had greater stenoses (≥50% stenosis: 30% vs 15% [P = .02]; ≥70% stenosis: 25% vs 4.5% [P < .001]) and had increased prevalence of MRI-derived adverse plaque features, including intraplaque hemorrhage (42% vs 23%; P = .004), necrotic core (36% vs 18%; P = .004), thrombus (7.3% vs 0%; P = .01), ulceration (18% vs 3.6%; P = .001), and higher 18F-NaF uptake (maximum tissue-to-background ratio, 1.38 [IQR, 1.12-1.82] vs 1.26 [IQR, 0.99-1.66], respectively; P = .04). Higher 18F-NaF uptake was positively associated with necrosis, intraplaque hemorrhage, ulceration, and calcification and inversely associated with fibrosis (P = .04 to P < .001). In multivariable analysis, carotid stenosis at or over 70% (odds ratio, 5.72 [95% CI: 2.2, 18]) and MRI-derived adverse plaque characteristics (odds ratio, 2.16 [95% CI: 1.2, 3.9]) were both associated with the culprit versus nonculprit carotid vessel. Conclusion Fluorine 18-labeled sodium fluoride PET/MRI characteristics were associated with the culprit carotid vessel in study participants with acute neurovascular syndrome. Clinical trial registration no. NCT03215550 and NCT03215563 © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
Plaque, Atherosclerotic , Aged , Carotid Arteries , Constriction, Pathologic , Female , Fluorine , Fluorine Radioisotopes , Humans , Magnetic Resonance Imaging , Male , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/diagnostic imaging , Positron-Emission Tomography/methods , Prospective Studies , Sodium Fluoride
9.
Heart ; 108(1): 46-53, 2022 01.
Article in English | MEDLINE | ID: mdl-34615668

ABSTRACT

OBJECTIVES: To determine the contribution of comorbidities on the reported widespread myocardial abnormalities in patients with recent COVID-19. METHODS: In a prospective two-centre observational study, patients hospitalised with confirmed COVID-19 underwent gadolinium and manganese-enhanced MRI and CT coronary angiography (CTCA). They were compared with healthy and comorbidity-matched volunteers after blinded analysis. RESULTS: In 52 patients (median age: 54 (IQR 51-57) years, 39 males) who recovered from COVID-19, one-third (n=15, 29%) were admitted to intensive care and a fifth (n=11, 21%) were ventilated. Twenty-three patients underwent CTCA, with one-third having underlying coronary artery disease (n=8, 35%). Compared with younger healthy volunteers (n=10), patients demonstrated reduced left (ejection fraction (EF): 57.4±11.1 (95% CI 54.0 to 60.1) versus 66.3±5 (95 CI 62.4 to 69.8)%; p=0.02) and right (EF: 51.7±9.1 (95% CI 53.9 to 60.1) vs 60.5±4.9 (95% CI 57.1 to 63.2)%; p≤0.0001) ventricular systolic function with elevated native T1 values (1225±46 (95% CI 1205 to 1240) vs 1197±30 (95% CI 1178 to 1216) ms;p=0.04) and extracellular volume fraction (ECV) (31±4 (95% CI 29.6 to 32.1) vs 24±3 (95% CI 22.4 to 26.4)%; p<0.0003) but reduced myocardial manganese uptake (6.9±0.9 (95% CI 6.5 to 7.3) vs 7.9±1.2 (95% CI 7.4 to 8.5) mL/100 g/min; p=0.01). Compared with comorbidity-matched volunteers (n=26), patients had preserved left ventricular function but reduced right ventricular systolic function (EF: 51.7±9.1 (95% CI 53.9 to 60.1) vs 59.3±4.9 (95% CI 51.0 to 66.5)%; p=0.0005) with comparable native T1 values (1225±46 (95% CI 1205 to 1240) vs 1227±51 (95% CI 1208 to 1246) ms; p=0.99), ECV (31±4 (95% CI 29.6 to 32.1) vs 29±5 (95% CI 27.0 to 31.2)%; p=0.35), presence of late gadolinium enhancement and manganese uptake. These findings remained irrespective of COVID-19 disease severity, presence of myocardial injury or ongoing symptoms. CONCLUSIONS: Patients demonstrate right but not left ventricular dysfunction. Previous reports of left ventricular myocardial abnormalities following COVID-19 may reflect pre-existing comorbidities. TRIAL REGISTRATION NUMBER: NCT04625075.


Subject(s)
COVID-19 , Ventricular Dysfunction, Right/diagnostic imaging , Adult , Computed Tomography Angiography , Contrast Media , Coronary Angiography , Female , Humans , Magnetic Resonance Imaging, Cine , Male , Manganese/metabolism , Matched-Pair Analysis , Middle Aged , Myocardium/metabolism , Prospective Studies , Survivors , Systole/physiology , Ventricular Dysfunction, Right/physiopathology
10.
Cardiovasc Res ; 117(1): 320-329, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32065620

ABSTRACT

AIMS: The effects of serelaxin, a recombinant form of human relaxin-2 peptide, on vascular function in the coronary microvascular and systemic macrovascular circulation remain largely unknown. This mechanistic, clinical study assessed the effects of serelaxin on myocardial perfusion, aortic stiffness, and safety in patients with stable coronary artery disease (CAD). METHODS AND RESULTS: In this multicentre, double-blind, parallel-group, placebo-controlled study, 58 patients were randomized 1:1 to 48 h intravenous infusion of serelaxin (30 µg/kg/day) or matching placebo. The primary endpoints were change from baseline to 47 h post-initiation of the infusion in global myocardial perfusion reserve (MPR) assessed using adenosine stress perfusion cardiac magnetic resonance imaging, and applanation tonometry-derived augmentation index (AIx). Secondary endpoints were: change from baseline in AIx and pulse wave velocity, assessed at 47 h, Day 30, and Day 180; aortic distensibility at 47 h; pharmacokinetics and safety. Exploratory endpoints were the effect on cardiorenal biomarkers [N-terminal pro-brain natriuretic peptide (NT-proBNP), high-sensitivity troponin T (hsTnT), endothelin-1, and cystatin C]. Of 58 patients, 51 were included in the primary analysis (serelaxin, n = 25; placebo, n = 26). After 2 and 6 h of serelaxin infusion, mean placebo-corrected blood pressure reductions of -9.6 mmHg (P = 0.01) and -13.5 mmHg (P = 0.0003) for systolic blood pressure and -5.2 mmHg (P = 0.02) and -8.4 mmHg (P = 0.001) for diastolic blood pressure occurred. There were no between-group differences from baseline to 47 h in global MPR (-0.24 vs. -0.13, P = 0.44) or AIx (3.49% vs. 0.04%, P = 0.21) with serelaxin compared with placebo. Endothelin-1 and cystatin C levels decreased from baseline in the serelaxin group, and there were no clinically relevant changes observed with serelaxin for NT-proBNP or hsTnT. Similar numbers of serious adverse events were observed in both groups (serelaxin, n = 5; placebo, n = 7) to 180-day follow-up. CONCLUSION: In patients with stable CAD, 48 h intravenous serelaxin reduced blood pressure but did not alter myocardial perfusion.


Subject(s)
Arterial Pressure/drug effects , Coronary Artery Disease/drug therapy , Coronary Circulation/drug effects , Relaxin/therapeutic use , Vascular Stiffness/drug effects , Vasodilation/drug effects , Vasodilator Agents/therapeutic use , Aged , Biomarkers/blood , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Double-Blind Method , Female , Humans , Magnetic Resonance Imaging, Cine , Male , Manometry , Middle Aged , Myocardial Perfusion Imaging , Prospective Studies , Pulse Wave Analysis , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/therapeutic use , Relaxin/adverse effects , Relaxin/pharmacokinetics , Treatment Outcome , United Kingdom , Vasodilator Agents/adverse effects , Vasodilator Agents/pharmacokinetics
11.
Sci Rep ; 10(1): 2018, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029765

ABSTRACT

Gadolinium chelates are widely used in cardiovascular magnetic resonance imaging (MRI) as passive intravascular and extracellular space markers. Manganese, a biologically active paramagnetic calcium analogue, provides novel intracellular myocardial tissue characterisation. We previously showed manganese-enhanced MRI (MEMRI) more accurately quantifies myocardial infarction than gadolinium delayed-enhancement MRI (DEMRI). Here, we evaluated the potential of MEMRI to assess myocardial viability compared to gold-standard 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) viability. Coronary artery ligation surgery was performed in male Sprague-Dawley rats (n = 13) followed by dual MEMRI and 18F-FDG PET imaging at 10-12 weeks. MEMRI was achieved with unchelated (EVP1001-1) or chelated (mangafodipir) manganese. T1 mapping MRI was followed by 18F-FDG micro-PET, with tissue taken for histological correlation. MEMRI and PET demonstrated good agreement with histology but native T1 underestimated infarct size. Quantification of viability by MEMRI, PET and MTC were similar, irrespective of manganese agent. MEMRI showed superior agreement with PET than native T1. MEMRI showed excellent agreement with PET and MTC viability. Myocardial MEMRI T1 correlated with 18F-FDG standard uptake values and influx constant but not native T1. Our findings indicate that MEMRI identifies and quantifies myocardial viability and has major potential for clinical application in myocardial disease and regenerative therapies.


Subject(s)
Contrast Media/administration & dosage , Heart/diagnostic imaging , Manganese/administration & dosage , Myocardial Infarction/diagnostic imaging , Myocardium/pathology , Animals , Disease Models, Animal , Female , Fluorodeoxyglucose F18/administration & dosage , Humans , Magnetic Resonance Imaging , Myocardial Infarction/pathology , Positron-Emission Tomography , Rats , Tissue Survival , Ventricular Remodeling/physiology
12.
MAGMA ; 33(1): 163-176, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31758418

ABSTRACT

To develop technical recommendations on the acquisition and post-processing of renal longitudinal (T1) and transverse (T2) relaxation time mapping. A multidisciplinary panel consisting of 18 experts in the field of renal T1 and T2 mapping participated in a consensus project, which was initiated by the European Cooperation in Science and Technology Action PARENCHIMA CA16103. Consensus recommendations were formulated using a two-step modified Delphi method. The first survey consisted of 56 items on T1 mapping, of which 4 reached the pre-defined consensus threshold of 75% or higher. The second survey was expanded to include both T1 and T2 mapping, and consisted of 54 items of which 32 reached consensus. Recommendations based were formulated on hardware, patient preparation, acquisition, analysis and reporting. Consensus-based technical recommendations for renal T1 and T2 mapping were formulated. However, there was considerable lack of consensus for renal T1 and particularly renal T2 mapping, to some extent surprising considering the long history of relaxometry in MRI, highlighting key knowledge gaps that require further work. This paper should be regarded as a first step in a long-term evidence-based iterative process towards ever increasing harmonization of scan protocols across sites, to ultimately facilitate clinical implementation.


Subject(s)
Kidney/diagnostic imaging , Magnetic Resonance Imaging/trends , Nephrology/trends , Translational Research, Biomedical/trends , Consensus , Delphi Technique , Humans , Interdisciplinary Communication , Magnetic Resonance Imaging/instrumentation , Surveys and Questionnaires
13.
Radiology ; 293(3): 554-564, 2019 12.
Article in English | MEDLINE | ID: mdl-31638489

ABSTRACT

Background Ferumoxytol is approved for use in the treatment of iron deficiency anemia, but it can serve as an alternative to gadolinium-based contrast agents. On the basis of postmarketing surveillance data, the Food and Drug Administration issued a black box warning regarding the risks of rare but serious acute hypersensitivity reactions during fast high-dose injection (510 mg iron in 17 seconds) for therapeutic use. Whereas single-center safety data for diagnostic use have been positive, multicenter data are lacking. Purpose To report multicenter safety data for off-label diagnostic ferumoxytol use. Materials and Methods The multicenter ferumoxytol MRI registry was established as an open-label nonrandomized surveillance databank without industry involvement. Each center monitored all ferumoxytol administrations, classified adverse events (AEs) using the National Cancer Institute Common Terminology Criteria for Adverse Events (grade 1-5), and assessed the relationship of AEs to ferumoxytol administration. AEs related to or possibly related to ferumoxytol injection were considered adverse reactions. The core laboratory adjudicated the AEs and classified them with the American College of Radiology (ACR) classification. Analysis of variance was used to compare vital signs. Results Between January 2003 and October 2018, 3215 patients (median age, 58 years; range, 1 day to 96 years; 1897 male patients) received 4240 ferumoxytol injections for MRI. Ferumoxytol dose ranged from 1 to 11 mg per kilogram of body weight (≤510 mg iron; rate ≤45 mg iron/sec). There were no systematic changes in vital signs after ferumoxytol administration (P > .05). No severe, life-threatening, or fatal AEs occurred. Eighty-three (1.9%) of 4240 AEs were related or possibly related to ferumoxytol infusions (75 mild [1.8%], eight moderate [0.2%]). Thirty-one AEs were classified as allergiclike reactions using ACR criteria but were consistent with minor infusion reactions observed with parenteral iron. Conclusion Diagnostic ferumoxytol use was well tolerated, associated with no serious adverse events, and implicated in few adverse reactions. Registry results indicate a positive safety profile for ferumoxytol use in MRI. © RSNA, 2019 Online supplemental material is available for this article.


Subject(s)
Contrast Media/adverse effects , Ferrosoferric Oxide/adverse effects , Magnetic Resonance Imaging , Off-Label Use , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Drug-Related Side Effects and Adverse Reactions , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Registries
14.
Heart ; 105(22): 1695-1700, 2019 11.
Article in English | MEDLINE | ID: mdl-31337670

ABSTRACT

Gadolinium-based contrast media are widely used in cardiovascular MRI to identify and to highlight the intravascular and extracellular space. After gadolinium, manganese has the second highest paramagnetic moment and was one of the first MRI contrast agents assessed in humans. Over the last 50 years, manganese-enhanced MRI (MEMRI) has emerged as a complementary approach enabling intracellular myocardial contrast imaging that can identify functional myocardium through its ability to act as a calcium analogue. Early progress was limited by its potential to cause myocardial depression. To overcome this problem, two clinical formulations of manganese were developed using either chelation (manganese dipyridoxyl diphosphate) or coadministration with a calcium compound (EVP1001-1, Eagle Vision Pharmaceuticals). Preclinical studies have demonstrated the efficacy of MEMRI in quantifying myocardial infarction and detecting myocardial viability as well as tracking altered contractility and calcium handling in cardiomyopathy. Recent clinical data suggest that MEMRI has exciting potential in the quantification of myocardial viability in ischaemic cardiomyopathy, the early detection of abnormalities in myocardial calcium handling, and ultimately, in the development of novel therapies for myocardial infarction or heart failure by actively quantifying viable myocardium. The stage is now set for wider clinical translational study of this novel and promising non-invasive imaging modality.


Subject(s)
Cardiomyopathies/diagnostic imaging , Contrast Media/administration & dosage , Edetic Acid/analogs & derivatives , Magnetic Resonance Imaging , Manganese/administration & dosage , Myocardium/pathology , Pyridoxal Phosphate/analogs & derivatives , Animals , Calcium Signaling , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Edetic Acid/administration & dosage , Humans , Myocardium/metabolism , Predictive Value of Tests , Prognosis , Pyridoxal Phosphate/administration & dosage , Tissue Survival
15.
Int J Mol Sci ; 20(3)2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30759756

ABSTRACT

A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24⁻30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24⁻30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24⁻30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24⁻30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak.


Subject(s)
Cerebral Small Vessel Diseases/metabolism , Cerebral Small Vessel Diseases/pathology , Ferric Compounds/metabolism , Ferrosoferric Oxide/metabolism , Aged , Blood-Brain Barrier/metabolism , Brain/metabolism , Evaluation Studies as Topic , Female , Humans , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/administration & dosage , Male
16.
Neuroimage ; 184: 431-439, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30240903

ABSTRACT

Preterm infants are at increased risk of alterations in brain structure and connectivity, and subsequent neurocognitive impairment. Breast milk may be more advantageous than formula feed for promoting brain development in infants born at term, but uncertainties remain about its effect on preterm brain development and the optimal nutritional regimen for preterm infants. We test the hypothesis that breast milk exposure is associated with improved markers of brain development and connectivity in preterm infants at term equivalent age. We collected information about neonatal breast milk exposure and brain MRI at term equivalent age from 47 preterm infants (mean postmenstrual age [PMA] 29.43 weeks, range 23.28-33.0). Network-Based Statistics (NBS), Tract-based Spatial Statistics (TBSS) and volumetric analysis were used to investigate the effect of breast milk exposure on white matter water diffusion parameters, tissue volumes, and the structural connectome. Twenty-seven infants received exclusive breast milk feeds for ≥75% of days of in-patient care and this was associated with higher connectivity in the fractional anisotropy (FA)-weighted connectome compared with the group who had < 75% of days receiving exclusive breast milk feeds (NBS, p = 0.04). Within the TBSS white matter skeleton, the group that received ≥75% exclusive breast milk days exhibited higher FA within the corpus callosum, cingulum cingulate gyri, centrum semiovale, corticospinal tracts, arcuate fasciculi and posterior limbs of the internal capsule compared with the low exposure group after adjustment for PMA at birth, PMA at image acquisition, bronchopulmonary dysplasia, and chorioamnionitis (p < 0.05). The effect on structural connectivity and tract water diffusion parameters was greater with ≥90% exposure, suggesting a dose effect. There were no significant groupwise differences in brain volumes. Breast milk feeding in the weeks after preterm birth is associated with improved structural connectivity of developing networks and greater FA in major white matter fasciculi.


Subject(s)
Brain/growth & development , Breast Feeding , Infant, Premature/growth & development , Nerve Net/growth & development , Connectome/methods , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Interpretation, Computer-Assisted/methods , Infant, Newborn , Male , White Matter/growth & development
17.
BMC Cancer ; 18(1): 890, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30208871

ABSTRACT

BACKGROUND: Accurate assessment of liver health prior to undertaking resectional liver surgery or chemoembolisation for primary and secondary cancers is essential for patient safety and optimal outcomes. LiverMultiScan™, an MRI-based technology, non-invasively quantifies hepatic fibroinflammatory disease, steatosis and iron content. We hypothesise that LiverMultiScan™can quantify liver health prior to surgery and inform the risk assessment for patients considering liver surgery or chemoembolization and seek to evaluate this technology in an operational environment. METHODS/DESIGN: HepaT1ca is an observational cohort study in two tertiary-referral liver surgery centres in the United Kingdom. The primary outcome is correlation between the pre-operative liver health assessment score (Hepatica score - calculated by weighting future remnant liver volume by liver inflammation and fibrosis (LIF) score) and the post-operative liver function composite integer-based risk (Hyder-Pawlik) score. With ethical approval and fully-informed consent, individuals considering liver surgery for primary or secondary cancer will undergo clinical assessment, blood sampling, and LiverMultiScan™multiparametric MRI before and after surgical liver resection or TACE. In nested cohorts of individuals undergoing chemotherapy prior to surgery, or those undergoing portal vein embolization (PVE) as an adjunct to surgery, an additional testing session prior to commencement of treatment will occur. Tissue will be examined histologically and by immunohistochemistry. Pre-operative liver health assessment scores and the post-operative risk scores will be correlated to define the ability of LiverMultiScan™to predict the risk of post-operative morbidity and mortality. Because technology performance in this setting is unknown, a pragmatic sample size will be used. For the primary outcome, n = 200 for the main cohort will allow detection of a minimum correlation coefficient of 0.2 with 5% significance and power of 80%. DISCUSSION: This study will refine the technology and clinical application of multiparametric MRI (including LiverMultiScan™), to quantify pre-existing liver health and predict post-intervention outcomes following liver resection. If successful, this study will advance the technology and support the use of multiparametric MRI as part of an enhanced pre-operative assessment to improve patient safety and to personalise operative risk assessment of liver surgery/non-surgical intervention. TRIAL REGISTRATION: This study is registered on ClinicalTrials.gov Identifier: NCT03213314 .


Subject(s)
Clinical Protocols , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , Liver/metabolism , Preoperative Care , Clinical Trials as Topic , Disease Management , Humans , Liver/pathology , Liver/surgery , Liver Function Tests , Liver Neoplasms/surgery , Magnetic Resonance Imaging
18.
Sci Rep ; 8(1): 9189, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29907829

ABSTRACT

LiverMultiScan is an emerging diagnostic tool using multiparametric MRI to quantify liver disease. In a two-centre prospective validation study, 161 consecutive adult patients who had clinically-indicated liver biopsies underwent contemporaneous non-contrast multiparametric MRI at 3.0 tesla (proton density fat fraction (PDFF), T1 and T2* mapping), transient elastography (TE) and Enhanced Liver Fibrosis (ELF) test. Non-invasive liver tests were correlated with gold standard histothological measures. Reproducibility of LiverMultiScan was investigated in 22 healthy volunteers. Iron-corrected T1 (cT1), TE, and ELF demonstrated a positive correlation with hepatic collagen proportionate area (all p < 0·001). TE was superior to ELF and cT1 for predicting fibrosis stage. cT1 maintained good predictive accuracy for diagnosing significant fibrosis in cases with indeterminate ELF, but not for cases with indeterminate TE values. PDFF had high predictive accuracy for individual steatosis grades, with AUROCs ranging from 0.90-0.94. T2* mapping diagnosed iron accumulation with AUROC of 0.79 (95% CI: 0.67-0.92) and negative predictive value of 96%. LiverMultiScan showed excellent test/re-test reliability (coefficients of variation ranging from 1.4% to 2.8% for cT1). Overall failure rates for LiverMultiScan, ELF and TE were 4.3%, 1.9% and 15%, respectively. LiverMultiScan is an emerging point-of-care diagnostic tool that is comparable with the established non-invasive tests for assessment of liver fibrosis, whilst at the same time offering a superior technical success rate and contemporaneous measurement of liver steatosis and iron accumulation.


Subject(s)
Fatty Liver , Iron/metabolism , Liver Cirrhosis , Liver , Magnetic Resonance Imaging/methods , Adult , Biopsy , Cross-Sectional Studies , Fatty Liver/diagnostic imaging , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Humans , Liver/diagnostic imaging , Liver/metabolism , Liver/pathology , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Magnetic Resonance Imaging/instrumentation , Male , Middle Aged , Prospective Studies
19.
Eur J Paediatr Neurol ; 22(5): 807-813, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29804802

ABSTRACT

PURPOSE: Measures of white matter (WM) microstructure inferred from diffusion magnetic resonance imaging (dMRI) are useful for studying brain development. There is uncertainty about agreement between FA and MD values obtained from region-of-interest (ROI) versus whole tract approaches. We investigated agreement between dMRI measures using ROI and Probabilistic Neighbourhood Tractography (PNT) in genu of corpus callosum (gCC) and corticospinal tracts (CST). MATERIALS AND METHODS: 81 neonates underwent 64 direction DTI at term equivalent age. FA and MD values were extracted from a 8 mm3 ROI placed within the gCC, right and left posterior limbs of internal capsule. PNT was used to segment gCC and CSTs to calculate whole tract-averaged FA and MD. Agreement between values obtained by each method was compared using Bland-Altman statistics and Pearson's correlation. RESULTS: Across the 3 tracts the mean difference in FA measured by PNT and ROI ranged between 0.13 and 0.17, and the 95% limits of agreement did not include the possibility of no difference. For MD, the mean difference in values obtained from PNT and ROI ranged between 0.101 and 0.184 mm2/s × 10-3 mm2/s: the mean difference in gCC was 0.101 × 10-3 mm2/s with 95% limits of agreement that included the possibility of no difference, but there was significant disagreement in MD values measured in the CSTs. CONCLUSION: Agreement between dMRI measures of neonatal WM microstructure calculated from ROI and whole tract averaged methods is weak. ROI approaches may not provide sufficient representation of tract microstructure at the level of neural systems in newborns.


Subject(s)
Corpus Callosum/anatomy & histology , Diffusion Tensor Imaging/methods , Pyramidal Tracts/anatomy & histology , Anisotropy , Corpus Callosum/diagnostic imaging , Female , Humans , Infant, Newborn , Male , Pyramidal Tracts/diagnostic imaging , White Matter/anatomy & histology , White Matter/diagnostic imaging
20.
J Neurol ; 265(8): 1795-1802, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29846780

ABSTRACT

Proton magnetic resonance spectroscopy yields metabolic information and has proved to be a useful addition to structural imaging in neurological diseases. We applied short-echo time Spectroscopic Imaging in a cohort of 42 patients with secondary progressive multiple sclerosis (SPMS). Linear modelling with respect to brain tissue type yielded metabolite levels that were significantly different in white matter lesions compared with normal-appearing white matter, suggestive of higher myelin turnover (higher choline), higher metabolic rate (higher creatine) and increased glial activity (higher myo-inositol) within the lesions. These findings suggest that the lesions have ongoing cellular activity that is not consistent with the usual assumption of 'chronic' lesions in SPMS, and may represent a target for repair therapies.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Multiple Sclerosis, Chronic Progressive/diagnostic imaging , Multiple Sclerosis, Chronic Progressive/metabolism , Cohort Studies , Female , Humans , Linear Models , Male , Middle Aged , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...