Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Alzheimers Dement ; 16(1): 22-36, 2020 01.
Article in English | MEDLINE | ID: mdl-31636026

ABSTRACT

INTRODUCTION: It is important to establish the natural history of familial frontotemporal lobar degeneration (f-FTLD) and provide clinical and biomarker data for planning these studies, particularly in the asymptomatic phase. METHODS: The Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects protocol was designed to enroll and follow at least 300 subjects for more than at least three annual visits who are members of kindreds with a mutation in one of the three most common f-FTLD genes-microtubule-associated protein tau, progranulin, or chromosome 9 open reading frame 72. RESULTS: We present the theoretical considerations of f-FTLD and the aims/objectives of this protocol. We also describe the design and methodology for evaluating and rating subjects, in which detailed clinical and neuropsychological assessments are performed, biofluid samples are collected, and magnetic resonance imaging scans are performed using a standard protocol. DISCUSSION: These data and samples, which are available to interested investigators worldwide, will facilitate planning for upcoming disease-modifying therapeutic trials in f-FTLD.


Subject(s)
Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Genetic Predisposition to Disease , Neuropsychological Tests/statistics & numerical data , Adult , C9orf72 Protein/genetics , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/cerebrospinal fluid , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Mutation/genetics , tau Proteins/genetics
2.
Neuroimage Clin ; 18: 591-598, 2018.
Article in English | MEDLINE | ID: mdl-29845007

ABSTRACT

Frontotemporal dementia (FTD) is a neurodegenerative disease with a strong genetic basis. Understanding the structural brain changes during pre-symptomatic stages may allow for earlier diagnosis of patients suffering from FTD; therefore, we investigated asymptomatic members of FTD families with mutations in C9orf72 and granulin (GRN) genes. Clinically asymptomatic subjects from families with C9orf72 mutation (15 mutation carriers, C9orf72+; and 23 non-carriers, C9orf72-) and GRN mutations (9 mutation carriers, GRN+; and 15 non-carriers, GRN-) underwent structural neuroimaging (MRI). Cortical thickness and subcortical gray matter volumes were calculated using FreeSurfer. Group differences were evaluated, correcting for age, sex and years to mean age of disease onset within the subject's family. Mean age of C9orf72+ and C9orf72- were 42.6 ±â€¯11.3 and 49.7 ±â€¯15.5 years, respectively; while GRN+ and GRN- groups were 50.1 ±â€¯8.7 and 53.2 ±â€¯11.2 years respectively. The C9orf72+ group exhibited cortical thinning in the temporal, parietal and frontal regions, as well as reduced volumes of bilateral thalamus and left caudate compared to the entire group of mutation non-carriers (NC: C9orf72- and GRN- combined). In contrast, the GRN+ group did not show any significant differences compared to NC. C9orf72 mutation carriers demonstrate a pattern of reduced gray matter on MRI prior to symptom onset compared to GRN mutation carriers. These findings suggest that the preclinical course of FTD differs depending on the genetic basis and that the choice of neuroimaging biomarkers for FTD may need to take into account the specific genes involved in causing the disease.


Subject(s)
Brain/diagnostic imaging , C9orf72 Protein/genetics , Frontotemporal Dementia/diagnostic imaging , Gray Matter/diagnostic imaging , Progranulins/genetics , Adult , Female , Frontotemporal Dementia/genetics , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Organ Size/physiology
3.
Acta Neuropathol Commun ; 5(1): 96, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29216908

ABSTRACT

Mutations in the stress granule protein T-cell restricted intracellular antigen 1 (TIA1) were recently shown to cause amyotrophic lateral sclerosis (ALS) with or without frontotemporal dementia (FTD). Here, we provide detailed clinical and neuropathological descriptions of nine cases with TIA1 mutations, together with comparisons to sporadic ALS (sALS) and ALS due to repeat expansions in C9orf72 (C9orf72+). All nine patients with confirmed mutations in TIA1 were female. The clinical phenotype was heterogeneous with a range in the age at onset from late twenties to the eighth decade (mean = 60 years) and disease duration from one to 6 years (mean = 3 years). Initial presentation was either focal weakness or language impairment. All affected individuals received a final diagnosis of ALS with or without FTD. No psychosis or parkinsonism was described. Neuropathological examination on five patients found typical features of ALS and frontotemporal lobar degeneration (FTLD-TDP, type B) with anatomically widespread TDP-43 proteinopathy. In contrast to C9orf72+ cases, caudate atrophy and hippocampal sclerosis were not prominent. Detailed evaluation of the pyramidal motor system found a similar degree of neurodegeneration and TDP-43 pathology as in sALS and C9orf72+ cases; however, cases with TIA1 mutations had increased numbers of lower motor neurons containing round eosinophilic and Lewy body-like inclusions on HE stain and round compact cytoplasmic inclusions with TDP-43 immunohistochemistry. Immunohistochemistry and immunofluorescence failed to demonstrate any labeling of inclusions with antibodies against TIA1. In summary, our TIA1 mutation carriers developed ALS with or without FTD, with a wide range in age at onset, but without other neurological or psychiatric features. The neuropathology was characterized by widespread TDP-43 pathology, but a more restricted pattern of neurodegeneration than C9orf72+ cases. Increased numbers of round eosinophilic and Lewy-body like inclusions in lower motor neurons may be a distinctive feature of ALS caused by TIA1 mutations.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mutation/genetics , T-Cell Intracellular Antigen-1/genetics , Adult , Aged , Amyotrophic Lateral Sclerosis/complications , Autopsy , C9orf72 Protein/genetics , DNA-Binding Proteins/metabolism , Family Health , Female , Frontotemporal Dementia/complications , Humans , Male , Middle Aged , Neuropathology
4.
J Int Neuropsychol Soc ; 20(7): 694-703, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24993774

ABSTRACT

Mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal dementia. We used a comprehensive neuropsychological battery to investigate whether early cognitive changes could be detected in GRN mutation carriers before dementia onset. Twenty-four at-risk members from six families with known GRN mutations underwent detailed neuropsychological testing. Group differences were investigated by domains of attention, language, visuospatial function, verbal memory, non-verbal memory, working memory and executive function. There was a trend for mutation carriers (n=8) to perform more poorly than non-carriers (n=16) across neuropsychological domains, with significant between group differences for visuospatial function (p<.04; d=0.92) and working memory function (p<.02; d=1.10). Measurable cognitive differences exist before the development of frontotemporal dementia in subjects with GRN mutations. The neuropsychological profile of mutation carriers suggests early asymmetric, right hemisphere brain dysfunction that is consistent with recent functional imaging data from our research group and the broader literature.


Subject(s)
Cognition Disorders/etiology , Frontotemporal Dementia/complications , Intercellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Adult , Aged , Attention , DNA Mutational Analysis , Female , Frontotemporal Dementia/genetics , Humans , Language , Male , Memory , Middle Aged , Neuropsychological Tests , Progranulins , ROC Curve , Statistics, Nonparametric , Verbal Learning
5.
Neurology ; 81(15): 1322-31, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24005336

ABSTRACT

OBJECTIVE: In this prospective cohort study, we investigated cerebral glucose metabolism reductions on [(18)F]-fluorodeoxyglucose (FDG)-PET in progranulin (GRN) mutation carriers prior to frontotemporal dementia (FTD) onset. METHODS: Nine mutation carriers (age 51.5 ± 13.5 years) and 11 noncarriers (age 52.7 ± 9.5 years) from 5 families with FTD due to GRN mutations underwent brain scanning with FDG-PET and MRI and clinical evaluation. Normalized FDG uptake values were calculated with reference to the pons. PET images were analyzed with regions of interest (ROI) and statistical parametric mapping (SPM) approaches. RESULTS: Compared with noncarriers, GRN mutation carriers had a lowered anterior-to-posterior (AP) ratio of FDG uptake (0.86 ± 0.09 vs 0.92 ± 0.05) and less left-right asymmetry, consistent with an overall pattern of right anterior cerebral hypometabolism. This pattern was observed regardless of whether they were deemed clinically symptomatic no dementia or asymptomatic. Individual ROIs with lowered FDG uptake included right anterior cingulate, insula, and gyrus rectus. SPM analysis supported and extended these findings, demonstrating abnormalities in the right and left medial frontal regions, right insular cortex, right precentral and middle frontal gyri, and right cerebellum. Right AP ratio was correlated with cognitive and clinical scores (modified Mini-Mental State Examination r = 0.74; Functional Rating Scale r = -0.73) but not age and years to estimated onset in mutation carriers. CONCLUSION: The frontotemporal lobar degenerative process associated with GRN mutations appears to begin many years prior to the average age at FTD onset (late 50s-early 60s). Right medial and ventral frontal cortex and insula may be affected in this process but the specific regional patterns associated with specific clinical variants remain to be elucidated.


Subject(s)
Dementia , Frontal Lobe/metabolism , Glucose/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Adult , Aged , Brain Mapping , Dementia/complications , Dementia/genetics , Dementia/pathology , Disease Progression , Female , Fluorodeoxyglucose F18 , Frontal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Progranulins , Retrospective Studies
7.
Brain ; 135(Pt 3): 709-22, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22344582

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis are closely related clinical syndromes with overlapping molecular pathogenesis. Several families have been reported with members affected by frontotemporal dementia, amyotrophic lateral sclerosis or both, which show genetic linkage to a region on chromosome 9p21. Recently, two studies identified the FTD/ALS gene defect on chromosome 9p as an expanded GGGGCC hexanucleotide repeat in a non-coding region of the chromosome 9 open reading frame 72 gene (C9ORF72). In the present study, we provide detailed analysis of the clinical features and neuropathology for 16 unrelated families with frontotemporal dementia caused by the C9ORF72 mutation. All had an autosomal dominant pattern of inheritance. Eight families had a combination of frontotemporal dementia and amyotrophic lateral sclerosis while the other eight had a pure frontotemporal dementia phenotype. Clinical information was available for 30 affected members of the 16 families. There was wide variation in age of onset (mean = 54.3, range = 34-74 years) and disease duration (mean = 5.3, range = 1-16 years). Early diagnoses included behavioural variant frontotemporal dementia (n = 15), progressive non-fluent aphasia (n = 5), amyotrophic lateral sclerosis (n = 9) and progressive non-fluent aphasia-amyotrophic lateral sclerosis (n = 1). Heterogeneity in clinical presentation was also common within families. However, there was a tendency for the phenotypes to converge with disease progression; seven subjects had final clinical diagnoses of both frontotemporal dementia and amyotrophic lateral sclerosis and all of those with an initial progressive non-fluent aphasia diagnosis subsequently developed significant behavioural abnormalities. Twenty-one affected family members came to autopsy and all were found to have transactive response DNA binding protein with M(r) 43 kD (TDP-43) pathology in a wide neuroanatomical distribution. All had involvement of the extramotor neocortex and hippocampus (frontotemporal lobar degeneration-TDP) and all but one case (clinically pure frontotemporal dementia) had involvement of lower motor neurons, characteristic of amyotrophic lateral sclerosis. In addition, a consistent and relatively specific pathological finding was the presence of neuronal inclusions in the cerebellar cortex that were ubiquitin/p62-positive but TDP-43-negative. Our findings indicate that the C9ORF72 mutation is a major cause of familial frontotemporal dementia with TDP-43 pathology, that likely accounts for the majority of families with combined frontotemporal dementia/amyotrophic lateral sclerosis presentation, and further support the concept that frontotemporal dementia and amyotrophic lateral sclerosis represent a clinicopathological spectrum of disease with overlapping molecular pathogenesis.


Subject(s)
Chromosomes, Human, Pair 9/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Mutation/genetics , Proteins/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Alleles , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/psychology , Autopsy , C9orf72 Protein , DNA/genetics , Executive Function , Female , Frontotemporal Dementia/psychology , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Magnetic Resonance Imaging , Male , Memory Disorders/etiology , Memory Disorders/psychology , Middle Aged , Neuropsychological Tests , Polymerase Chain Reaction , Speech Intelligibility
8.
Neuron ; 72(2): 245-56, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-21944778

ABSTRACT

Several families have been reported with autosomal-dominant frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), genetically linked to chromosome 9p21. Here, we report an expansion of a noncoding GGGGCC hexanucleotide repeat in the gene C9ORF72 that is strongly associated with disease in a large FTD/ALS kindred, previously reported to be conclusively linked to chromosome 9p. This same repeat expansion was identified in the majority of our families with a combined FTD/ALS phenotype and TDP-43-based pathology. Analysis of extended clinical series found the C9ORF72 repeat expansion to be the most common genetic abnormality in both familial FTD (11.7%) and familial ALS (23.5%). The repeat expansion leads to the loss of one alternatively spliced C9ORF72 transcript and to formation of nuclear RNA foci, suggesting multiple disease mechanisms. Our findings indicate that repeat expansion in C9ORF72 is a major cause of both FTD and ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Chromosomes, Human, Pair 9 , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Microsatellite Repeats , Proteins/genetics , Alleles , C9orf72 Protein , Female , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Male , Pedigree , Polymorphism, Single Nucleotide
9.
J Neurol Neurosurg Psychiatry ; 82(2): 196-203, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20562461

ABSTRACT

BACKGROUND: Frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) is a heritable form of FTD, but the gene(s) responsible for the majority of autosomal dominant FTD-ALS cases have yet to be found. Previous studies have identified a region on chromosome 9p that is associated with FTD and ALS. METHODS: The authors report the clinical, volumetric MRI, neuropathological and genetic features of a new chromosome 9p-linked FTD-ALS family, VSM-20. RESULTS: Ten members of family VSM-20 displayed heterogeneous clinical phenotypes of isolated behavioural-variant FTD (bvFTD), ALS or a combination of the two. Parkinsonism was common, with one individual presenting with a corticobasal syndrome. Analysis of structural MRI scans from five affected family members revealed grey- and white-matter loss that was most prominent in the frontal lobes, with mild parietal and occipital lobe atrophy, but less temporal lobe atrophy than in 10 severity-matched sporadic bvFTD cases. Autopsy in three family members showed a consistent and unique subtype of FTLD-TDP pathology. Genome-wide linkage analysis conclusively linked family VSM-20 to a 28.3 cM region between D9S1808 and D9S251 on chromosome 9p, reducing the published minimal linked region to a 3.7 Mb interval. Genomic sequencing and expression analysis failed to identify mutations in the 10 known and predicted genes within this candidate region, suggesting that next-generation sequencing may be needed to determine the mutational mechanism associated with chromosome 9p-linked FTD-ALS. CONCLUSIONS: Family VSM-20 significantly reduces the region linked to FTD-ALS on chromosome 9p. A distinct pattern of brain atrophy and neuropathological findings may help to identify other families with FTD-ALS caused by this genetic abnormality.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Chromosomes, Human, Pair 9/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Adult , Amyotrophic Lateral Sclerosis/complications , Autopsy , Brain/pathology , DNA Mutational Analysis , Family , Female , Frontotemporal Dementia/complications , Genetic Linkage , Genetic Predisposition to Disease , Genome-Wide Association Study , Haplotypes , Humans , Immunohistochemistry , Lod Score , Magnetic Resonance Imaging , Male , Middle Aged , Parkinson Disease/genetics , Pedigree
10.
J Cogn Neurosci ; 20(10): 1839-53, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18370601

ABSTRACT

Autobiographical memory paradigms have been increasingly used to study the behavioral and neuroanatomical correlates of human remote memory. Although there are numerous functional neuroimaging studies on this topic, relatively few studies of patient samples exist, with heterogeneity of results owing to methodological variability. In this study, fronto-temporal lobar degeneration (FTLD), a form of dementia affecting regions crucial to autobiographical memory, was used as a model of autobiographical memory loss. We emphasized the separation of episodic (recollection of specific event, perceptual, and mental state information) from semantic (factual information unspecific in time and place) autobiographical memory, derived from a reliable method for scoring transcribed autobiographical protocols, the Autobiographical Interview [Levine, B., Svoboda, E., Hay, J., Winocur, G., & Moscovitch, M. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689, 2002]. Patients with the fronto-temporal dementia (FTD) and mixed fronto-temporal and semantic dementia (FTD/SD) variants of FTLD were impaired at reconstructing episodically rich autobiographical memories across the lifespan, with FTD/SD patients generating an excess of generic semantic autobiographical information. Patients with progressive nonfluent aphasia were mildly impaired for episodic autobiographical memory, but this impairment was eliminated with the provision of structured cueing, likely reflecting relatively intact medial-temporal lobe function, whereas the same cueing failed to bolster the FTD and FTD/SD patients' performance relative to that of matched comparison subjects. The pattern of episodic, but not semantic, autobiographical impairment was enhanced with disease progression on 1- to 2-year follow-up testing in a subset of patients, supplementing the cross-sectional evidence for specificity of episodic autobiographical impairment with longitudinal data. This behavioral pattern covaried with volume loss in a distributed left-lateralized posterior network centered on the temporal lobe, consistent with evidence from other patient and functional neuroimaging studies of autobiographical memory. Frontal lobe volumes, however, did not significantly contribute to this network, suggesting that frontal contributions to autobiographical episodic memory may be more complex than previously appreciated.


Subject(s)
Brain/pathology , Dementia/complications , Dementia/pathology , Memory Disorders/etiology , Mental Recall/physiology , Aged , Atrophy/pathology , Atrophy/physiopathology , Brain/physiopathology , Brain Mapping , Case-Control Studies , Disease Progression , Female , Follow-Up Studies , Functional Laterality , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Memory Disorders/pathology , Middle Aged , Neuropsychological Tests , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL