Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
ChemMedChem ; 16(19): 2982-3002, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34164919

ABSTRACT

The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth and proliferation. Dysregulation of the Hippo pathway due to overexpression of TEAD has been reported in a wide range of cancers. Inhibition of TEAD represses the expression of associated genes, demonstrating the value of this transcription factor for the development of novel anti-cancer therapies. We report herein the design, synthesis and biological evaluation of LM98, a flufenamic acid analogue. LM98 shows strong affinity to TEAD, inhibits its autopalmitoylation and reduces the YAP-TEAD transcriptional activity. Binding of LM98 to TEAD was supported by 19 F-NMR studies while co-crystallization experiments confirmed that LM98 is anchored within the palmitic acid pocket of TEAD. LM98 reduces the expression of CTGF and Cyr61, inhibits MDA-MB-231 breast cancer cell migration and arrests cell cycling in the S phase during cell division.


Subject(s)
Antineoplastic Agents/pharmacology , Flufenamic Acid/pharmacology , Small Molecule Libraries/pharmacology , TEA Domain Transcription Factors/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flufenamic Acid/chemistry , Humans , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , TEA Domain Transcription Factors/metabolism , Tumor Cells, Cultured
2.
ACS Med Chem Lett ; 12(6): 887-892, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141066

ABSTRACT

Remodelin is a putative small molecule inhibitor of the RNA acetyltransferase NAT10 which has shown preclinical efficacy in models of the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Here we evaluate remodelin's assay interference characteristics and effects on NAT10-catalyzed RNA cytidine acetylation. We find the remodelin chemotype constitutes a cryptic assay interference compound, which does not react with small molecule thiols but demonstrates protein reactivity in ALARM NMR and proteome-wide affinity profiling assays. Biophysical analyses find no direct evidence for interaction of remodelin with the NAT10 acetyltransferase active site. Cellular studies verify that N4-acetylcytidine (ac4C) is a nonredundant target of NAT10 activity in human cell lines and find that this RNA modification is not affected by remodelin treatment in several orthogonal assays. These studies display the potential for remodelin's chemotype to interact with multiple protein targets in cells and indicate remodelin should not be applied as a specific chemical inhibitor of NAT10-catalyzed RNA acetylation.

3.
Proc Natl Acad Sci U S A ; 116(28): 14164-14173, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31239348

ABSTRACT

The cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG from Plasmodium falciparum and Plasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keep Plasmodium PKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/chemistry , Malaria/genetics , Plasmodium falciparum/chemistry , Protein Conformation , Amino Acid Sequence/genetics , Animals , Binding Sites/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Cyclic GMP/chemistry , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/ultrastructure , Humans , Kinetics , Malaria/parasitology , Plasmodium falciparum/pathogenicity , Plasmodium falciparum/ultrastructure , Protein Binding
5.
SLAS Discov ; 23(9): 930-940, 2018 10.
Article in English | MEDLINE | ID: mdl-29562800

ABSTRACT

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a multidomain protein that plays a critical role in maintaining DNA methylation patterns through concurrent recognition of hemimethylated DNA and histone marks by various domains, and recruitment of DNA methyltransferase 1 (DNMT1). UHRF1 is overexpressed in various cancers, including breast cancer. The tandem tudor domain (TTD) of UHRF1 specifically and tightly binds to histone H3 di- or trimethylated at lysine 9 (H3K9me2 or H3K9me3, respectively), and this binding is essential for UHRF1 function. We developed an H3K9me3 peptide displacement assay, which was used to screen a library of 44,000 compounds for small molecules that disrupt the UHRF1-H3K9me3 interaction. This screen resulted in the identification of NV01, which bound to UHRF1-TTD with a Kd value of 5 µM. The structure of UHRF1-TTD in complex with NV01 confirmed binding to the H3K9me3-binding pocket. Limited structure-based optimization of NV01 led to the discovery of NV03 (Kd of 2.4 µM). These well-characterized small-molecule antagonists of the UHRF1-H3K9me2/3 interaction could be valuable starting chemical matter for developing more potent and cell-active probes toward further characterizing UHRF1 function, with possible applications as anticancer therapeutics.


Subject(s)
CCAAT-Enhancer-Binding Proteins/chemistry , Drug Discovery/methods , Histones/chemistry , Protein Binding/drug effects , Tudor Domain , Binding Sites , Biological Assay/methods , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Histones/metabolism , Humans , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Mutagenesis, Site-Directed , Small Molecule Libraries , Structure-Activity Relationship , Ubiquitin-Protein Ligases
6.
J Biol Chem ; 292(51): 20947-20959, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29074623

ABSTRACT

UHRF1 is a key mediator of inheritance of epigenetic DNA methylation patterns during cell division and is a putative target for cancer therapy. Recent studies indicate that interdomain interactions critically influence UHRF1's chromatin-binding properties, including allosteric regulation of its histone binding. Here, using an integrative approach that combines small angle X-ray scattering, NMR spectroscopy, and molecular dynamics simulations, we characterized the dynamics of the tandem tudor domain-plant homeodomain (TTD-PHD) histone reader module, including its 20-residue interdomain linker. We found that the apo TTD-PHD module in solution comprises a dynamic ensemble of conformers, approximately half of which are compact conformations, with the linker lying in the TTD peptide-binding groove. These compact conformations are amenable to cooperative, high-affinity histone binding. In the remaining conformations, the linker position was in flux, and the reader adopted both extended and compact states. Using a small-molecule fragment screening approach, we identified a compound, 4-benzylpiperidine-1-carboximidamide, that binds to the TTD groove, competes with linker binding, and promotes open TTD-PHD conformations that are less efficient at H3K9me3 binding. Our work reveals a mechanism by which the dynamic TTD-PHD module can be allosterically targeted with small molecules to modulate its histone reader function for therapeutic or experimental purposes.


Subject(s)
CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , Allosteric Regulation , Crystallography, X-Ray , Epigenesis, Genetic , Histones/metabolism , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Domains , Scattering, Small Angle , Ubiquitin-Protein Ligases , X-Ray Diffraction
8.
Nat Chem Biol ; 13(4): 389-395, 2017 04.
Article in English | MEDLINE | ID: mdl-28135237

ABSTRACT

Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.


Subject(s)
Antineoplastic Agents/pharmacology , Indans/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Sulfonamides/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indans/chemistry , Models, Molecular , Molecular Structure , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Protein Binding/drug effects , Structure-Activity Relationship , Sulfonamides/chemistry , Tumor Cells, Cultured
9.
J Med Chem ; 59(19): 9124-9139, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27584694

ABSTRACT

Well-characterized selective inhibitors of protein arginine methyltransferases (PRMTs) are invaluable chemical tools for testing biological and therapeutic hypotheses. Based on 4, a fragment-like inhibitor of type I PRMTs, we conducted structure-activity relationship (SAR) studies and explored three regions of this scaffold. The studies led to the discovery of a potent, selective, and cell-active dual inhibitor of PRMT4 and PRMT6, 17 (MS049). As compared to 4, 17 displayed much improved potency for PRMT4 and PRMT6 in both biochemical and cellular assays. It was selective for PRMT4 and PRMT6 over other PRMTs and a broad range of other epigenetic modifiers and nonepigenetic targets. We also developed 46 (MS049N), which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. Considering possible overlapping substrate specificity of PRMTs, 17 and 46 are valuable chemical tools for dissecting specific biological functions and dysregulation of PRMT4 and PRMT6 in health and disease.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nuclear Proteins/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Arginine , Crystallography, X-Ray , Drug Discovery , HEK293 Cells , Humans , Models, Molecular , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism
10.
J Med Chem ; 59(6): 2478-96, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26958703

ABSTRACT

WD repeat-containing protein 5 (WDR5) is an important component of the multiprotein complex essential for activating mixed-lineage leukemia 1 (MLL1). Rearrangement of the MLL1 gene is associated with onset and progression of acute myeloid and lymphoblastic leukemias, and targeting the WDR5-MLL1 interaction may result in new cancer therapeutics. Our previous work showed that binding of small molecule ligands to WDR5 can modulate its interaction with MLL1, suppressing MLL1 methyltransferase activity. Initial structure-activity relationship studies identified N-(2-(4-methylpiperazin-1-yl)-5-substituted-phenyl) benzamides as potent and selective antagonists of this protein-protein interaction. Guided by crystal structure data and supported by in silico library design, we optimized the scaffold by varying the C-1 benzamide and C-5 substituents. This allowed us to develop the first highly potent (Kdisp < 100 nM) small molecule antagonists of the WDR5-MLL1 interaction and demonstrate that N-(4-(4-methylpiperazin-1-yl)-3'-(morpholinomethyl)-[1,1'-biphenyl]-3-yl)-6-oxo-4-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide 16d (OICR-9429) is a potent and selective chemical probe suitable to help dissect the biological role of WDR5.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacology , Dihydropyridines/chemical synthesis , Dihydropyridines/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/drug effects , Leukemia/drug therapy , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Female , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, SCID , Models, Molecular , Molecular Docking Simulation , Small Molecule Libraries , Structure-Activity Relationship , X-Ray Diffraction
11.
Nat Chem Biol ; 12(3): 180-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26807715

ABSTRACT

We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.


Subject(s)
Oligopeptides/pharmacology , Polycomb Repressive Complex 1/antagonists & inhibitors , Polycomb Repressive Complex 1/genetics , Animals , Biological Availability , Biotinylation , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Gene Expression Regulation/genetics , Humans , Isomerism , Ligases , Male , Methylation , Mice , Models, Molecular , Polycomb Repressive Complex 1/biosynthesis , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Substrate Specificity , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
12.
J Med Chem ; 59(3): 1176-83, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26824386

ABSTRACT

Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Structure-Activity Relationship
13.
ACS Chem Biol ; 11(3): 772-781, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26598975

ABSTRACT

Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and the pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective, and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical, and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, -3, -4, -6, and -8 but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease.


Subject(s)
Antineoplastic Agents/pharmacology , Ethanolamines/pharmacology , Ethylenediamines/pharmacology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrroles/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Ethanolamines/chemistry , Ethylenediamines/chemistry , Humans , Models, Molecular , Molecular Structure , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Pyrroles/chemistry
15.
Nat Chem Biol ; 11(8): 571-578, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26167872

ABSTRACT

The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.


Subject(s)
Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacology , Dihydropyridines/pharmacology , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amino Acid Sequence , Animals , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Molecular Docking Simulation , Molecular Sequence Data , Molecular Targeted Therapy , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Signal Transduction , Tumor Cells, Cultured
16.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136132

ABSTRACT

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Subject(s)
Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Pyrrolidines/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Tetrahydroisoquinolines/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Fibroblasts/drug effects , Hippo Signaling Pathway , Histone-Lysine N-Methyltransferase/genetics , Humans , MCF-7 Cells , Methyltransferases/antagonists & inhibitors , Methyltransferases/metabolism , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Pyrrolidines/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Tetrahydroisoquinolines/chemistry , Transcription Factors , YAP-Signaling Proteins
17.
Nat Struct Mol Biol ; 21(8): 686-695, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24997600

ABSTRACT

The RNA polymerase II (RNAPII) C-terminal domain (CTD) heptapeptide repeats (1-YSPTSPS-7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD-interaction domains (CIDs) with RNAPII CTD repeats phosphorylated at S2 and S7. Crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with RNAPII CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.


Subject(s)
Cell Cycle Proteins/chemistry , Neoplasm Proteins/chemistry , Protein Processing, Post-Translational , RNA Polymerase II/chemistry , Repressor Proteins/chemistry , Amino Acid Sequence , Amino Acid Substitution , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , RNA Polymerase II/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Serine/chemistry
18.
Nat Commun ; 5: 3952, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24853335

ABSTRACT

Pathogens can interfere with vital biological processes of their host by mimicking host proteins. The NS1 protein of the influenza A H3N2 subtype possesses a histone H3K4-like sequence at its carboxyl terminus and has been reported to use this mimic to hijack host proteins. However, this mimic lacks a free N-terminus that is essential for binding to many known H3K4 readers. Here we show that the double chromodomains of CHD1 adopt an 'open pocket' to interact with the free N-terminal amine of H3K4, and the open pocket permits the NS1 mimic to bind in a distinct conformation. We also explored the possibility that NS1 hijacks other cellular proteins and found that the NS1 mimic has access to only a subset of chromatin-associated factors, such as WDR5. Moreover, methylation of the NS1 mimic can not be reversed by the H3K4 demethylase LSD1. Overall, we thus conclude that the NS1 mimic is an imperfect histone mimic.


Subject(s)
Histones/metabolism , Host-Pathogen Interactions , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Calorimetry , Crystallography, X-Ray , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Influenza A Virus, H3N2 Subtype/metabolism , Intracellular Signaling Peptides and Proteins , Mass Spectrometry , Methylation , Models, Molecular , Molecular Sequence Data , Peptides/metabolism , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Structure-Activity Relationship
19.
J Biol Chem ; 289(17): 12177-12188, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24634223

ABSTRACT

PRDM9 (PR domain-containing protein 9) is a meiosis-specific protein that trimethylates H3K4 and controls the activation of recombination hot spots. It is an essential enzyme in the progression of early meiotic prophase. Disruption of the PRDM9 gene results in sterility in mice. In human, several PRDM9 SNPs have been implicated in sterility as well. Here we report on kinetic studies of H3K4 methylation by PRDM9 in vitro indicating that PRDM9 is a highly active histone methyltransferase catalyzing mono-, di-, and trimethylation of the H3K4 mark. Screening for other potential histone marks, we identified H3K36 as a second histone residue that could also be mono-, di-, and trimethylated by PRDM9 as efficiently as H3K4. Overexpression of PRDM9 in HEK293 cells also resulted in a significant increase in trimethylated H3K36 and H3K4 further confirming our in vitro observations. Our findings indicate that PRDM9 may play critical roles through H3K36 trimethylation in cells.


Subject(s)
DNA Methylation , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Calorimetry , Histones/chemistry , Humans , Kinetics , Mass Spectrometry , Substrate Specificity
20.
PLoS One ; 8(12): e83737, 2013.
Article in English | MEDLINE | ID: mdl-24367611

ABSTRACT

Polycomb repressive complex 2 (PRC2) is an important regulator of cellular differentiation and cell type identity. Overexpression or activating mutations of EZH2, the catalytic component of the PRC2 complex, are linked to hyper-trimethylation of lysine 27 of histone H3 (H3K27me3) in many cancers. Potent EZH2 inhibitors that reduce levels of H3K27me3 kill mutant lymphoma cells and are efficacious in a mouse xenograft model of malignant rhabdoid tumors. Unlike most SET domain methyltransferases, EZH2 requires PRC2 components, SUZ12 and EED, for activity, but the mechanism by which catalysis is promoted in the PRC2 complex is unknown. We solved the 2.0 Å crystal structure of the EZH2 methyltransferase domain revealing that most of the canonical structural features of SET domain methyltransferase structures are conserved. The site of methyl transfer is in a catalytically competent state, and the structure clarifies the structural mechanism underlying oncogenic hyper-trimethylation of H3K27 in tumors harboring mutations at Y641 or A677. On the other hand, the I-SET and post-SET domains occupy atypical positions relative to the core SET domain resulting in incomplete formation of the cofactor binding site and occlusion of the substrate binding groove. A novel CXC domain N-terminal to the SET domain may contribute to the apparent inactive conformation. We propose that protein interactions within the PRC2 complex modulate the trajectory of the post-SET and I-SET domains of EZH2 in favor of a catalytically competent conformation.


Subject(s)
Carcinogenesis/genetics , Catalytic Domain , Coenzymes/metabolism , Mutation , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , S-Adenosylmethionine/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray , Enhancer of Zeste Homolog 2 Protein , Enzyme Activation , Humans , Lymphoma/genetics , Lymphoma/pathology , Mice , Models, Molecular , Molecular Sequence Data , Polycomb Repressive Complex 2/genetics , Protein Binding , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL