Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 14(1): 1681, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973268

ABSTRACT

Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Transcriptome , Epigenesis, Genetic , Tumor Suppressor Proteins/genetics , Gene Expression Regulation, Neoplastic
3.
Nat Genet ; 54(9): 1390-1405, 2022 09.
Article in English | MEDLINE | ID: mdl-35995947

ABSTRACT

Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Transformation, Neoplastic/genetics , Humans , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/genetics , Pancreatic Neoplasms
4.
iScience ; 11: 178-188, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30612036

ABSTRACT

Single-cell analysis is a rapidly evolving to characterize molecular information at the individual cell level. Here, we present a new approach with the potential to overcome several key challenges facing the currently available techniques. The approach is based on the identification of volatile organic compounds (VOCs), viz. organic compounds having relatively high vapor pressure, emitted to the cell's headspace. This concept is demonstrated using lung cancer cells with various p53 genetic status and normal lung cells. The VOCs were analyzed by gas chromatography combined with mass spectrometry. Among hundreds of detected compounds, 18 VOCs showed significant changes in their concentration levels in tumor cells versus control. The composition of these VOCs was found to depend, also, on the sub-molecular structure of the p53 genetic status. Analyzing the VOCs offers a complementary way of querying the molecular mechanisms of cancer as well as of developing new generation(s) of biomedical approaches for personalized screening and diagnosis.

5.
Adv Biosyst ; 3(10): e1900131, 2019 10.
Article in English | MEDLINE | ID: mdl-32648725

ABSTRACT

Cell-cell cross talk is of great importance in cancer research due to its major role in proliferation, differentiation, migration, and influence on the apoptotic pathway. Different cell-cell communication mechanisms have come mainly from proteomic and genomic approaches. In this paper, a new route is reported for cross talk between cancer cells that occurs, even when they are far away from each other. Single-cell and culture analysis shows that upregulation of cancer cells emits hundreds of volatile organic compounds (VOCs) into their headspace. Part of the VOCs remains without any change, disregarding the biological environment around it. The other part of the VOCs is exchanged between monocultures of the cells as well as between co-cultures of the cells with no physical contact between them, leading to different changes in growth than when left on their own. The chemical nature and composition of these VOCs have been determined and are discussed herein. Cell-to-cell cross talk has the advantage of being suitable for transfer/diffusion over relatively long distances. It would thus be expected to serve as a shuttling pad toward the development of advanced approaches that could enable very early detection of cancer and/or monitoring of metastasis and related cancer therapy.


Subject(s)
Cell Communication/physiology , Up-Regulation/physiology , Volatile Organic Compounds/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/physiology , Coculture Techniques , Humans , Signal Transduction/physiology
6.
Exp Lung Res ; 41(4): 173-88, 2015 May.
Article in English | MEDLINE | ID: mdl-25844688

ABSTRACT

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is characterized by alveolitis, progressing into fibrosis. Due to the involvement of both endothelin and platelet-derived growth factor signaling in IPF, combination effects of a bosentan and imatinib were studied in mouse model of bleomycin-induced pulmonary fibrosis. METHODS: Mice subjected to bleomycin instillation (0.05 U) and were administered with either bosentan (100 mg/kg) and/or imatinib (50 mg/kg). Inflammatory cell count, total protein estimation in bronchoalveolar lavage fluid, lung edema, superoxide dismutase, catalase, myeloperoxidase activities, and Hematoxylin & Eosin staining were performed on day 7. Hydroxyproline content, α-smooth muscle actin (SMA), collagens I and III gene expression analysis, immunohistochemistry, matrix metalloproteinases-9 and -2 activities, trichrome and sirius red staining were performed on day 21. RESULTS: Combination treatment with bosentan and imatinib prevented bleomycin-induced mortality and loss of body weight more than the individual agents. On day 7, the combination therapy attenuated bleomycin-induced increase of total and differential inflammatory cell counts, total proteins, lung wet/dry weight ratio, myeloperoxidase activity, lung inflammatory cell infiltration more than individual agents alone. Bosentan but not imatinib ameliorated superoxide dismutase and catalase activities, which were lowered following bleomycin instillation. On day 21, combination therapy ameliorated bleomycin-induced increase of fibrosis score, collagen deposition, protein and gene expression of SMA, mRNA levels of collagens-I and -III, matrix metalloproteinase-9 and -2 activities more than monotherapy. CONCLUSION: Combination of bosentan and imatinib exerted more enhanced protection against bleomycin-induced inflammation and fibrosis than either of the agents alone.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Bleomycin , Idiopathic Pulmonary Fibrosis/prevention & control , Imatinib Mesylate/pharmacology , Lung/drug effects , Sulfonamides/pharmacology , Actins/genetics , Actins/metabolism , Animals , Bosentan , Catalase/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Female , Hydroxyproline/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Oxidative Stress/drug effects , Peroxidase/metabolism , Pneumonia/chemically induced , Pneumonia/prevention & control , Pulmonary Edema/chemically induced , Pulmonary Edema/prevention & control , RNA, Messenger/metabolism , Superoxide Dismutase/metabolism , Time Factors
7.
Nat Prod Res ; 29(5): 484-90, 2015.
Article in English | MEDLINE | ID: mdl-25167883

ABSTRACT

This study was designed to investigate the combination effects of brucine and gemcitabine, each with anticancer properties, in MCF-7 human breast cancer cells in culture. With regard to cell viability, effects of both the drugs and their combinations were inversely proportional to dose and time. For various proportional drug combinations studied, combination effects were analysed using CompuSyn software. The analyses revealed synergistic and/or additive effects regarding cell viability, anchorage-independent growth and cell migration. Combination analyses exhibited diversified impacts of the type of combination treatment, namely pretreatment with either drug followed by exposure to the other, or treatment with both drugs at the same time. Compared with untreated cells, combination treatment of asynchronised MCF-7 cells resulted in 17.2 × decrease in G2 phase, increasing G1 (2.1 × ) and S (1.5 × ) phase cells in cell cycle analysis. Brucine, either individually or in combination, but not gemcitabine, inhibited NF-kB subunit (p65) expression in MCF-7 cells.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Breast Neoplasms/pathology , Deoxycytidine/analogs & derivatives , Strychnine/analogs & derivatives , Cell Cycle/drug effects , Deoxycytidine/pharmacology , Drug Therapy, Combination , Female , Humans , MCF-7 Cells/drug effects , Strychnine/pharmacology , Gemcitabine
8.
Can J Physiol Pharmacol ; 92(8): 631-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24933624

ABSTRACT

Idiopathic pulmonary fibrosis is a progressive fatal lung disease characterized by excessive collagen deposition, with no effective treatments. We investigated the efficacy of natural products with high anti-inflammatory activity, such as passion fruit peel extract (PFPE), in a mouse model of bleomycin-induced pulmonary fibrosis (PF). C57BL/6J mice were subjected to a single intratracheal instillation of bleomycin to induce PF. Daily PFPE treatment significantly reduced loss of body mass and mortality rate in mice compared with those treated with bleomycin. While bleomycin-induced PF resulted in elevated total numbers of inflammatory cells, macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid on both days 7 and 21, PFPE administration significantly attenuated these phenomena compared with bleomycin group. On day 7, the decreased superoxide dismutase and myeloperoxidase activities observed in the bleomycin group were significantly restored with PFPE treatment. On day 21, enhanced hydroxyproline deposition in the bleomycin group was also suppressed by PFPE administration. PFPE treatment significantly attenuated extensive inflammatory cell infiltration and accumulation of collagen in lung tissue sections of bleomycin-induced mice on days 7 and 21, respectively. Our results indicate that administration of PFPE decreased bleomycin-induced PF because of anti-inflammatory and antioxidant activities.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibiotics, Antineoplastic/adverse effects , Antioxidants/therapeutic use , Bleomycin/adverse effects , Passiflora/chemistry , Plant Extracts/therapeutic use , Pulmonary Fibrosis/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Body Weight/drug effects , Bronchoalveolar Lavage Fluid/cytology , Female , Flavonoids/pharmacology , Flavonoids/therapeutic use , Hydroxyproline/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Oxidative Stress/drug effects , Peroxidase/metabolism , Phytotherapy , Plant Extracts/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/mortality , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...