Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Neural Eng ; 21(2)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579741

ABSTRACT

Objective. The auditory steady-state response (ASSR) allows estimation of hearing thresholds. The ASSR can be estimated from electroencephalography (EEG) recordings from electrodes positioned on both the scalp and within the ear (ear-EEG). Ear-EEG can potentially be integrated into hearing aids, which would enable automatic fitting of the hearing device in daily life. The conventional stimuli for ASSR-based hearing assessment, such as pure tones and chirps, are monotonous and tiresome, making them inconvenient for repeated use in everyday situations. In this study we investigate the use of natural speech sounds for ASSR estimation.Approach.EEG was recorded from 22 normal hearing subjects from both scalp and ear electrodes. Subjects were stimulated monaurally with 180 min of speech stimulus modified by applying a 40 Hz amplitude modulation (AM) to an octave frequency sub-band centered at 1 kHz. Each 50 ms sub-interval in the AM sub-band was scaled to match one of 10 pre-defined levels (0-45 dB sensation level, 5 dB steps). The apparent latency for the ASSR was estimated as the maximum average cross-correlation between the envelope of the AM sub-band and the recorded EEG and was used to align the EEG signal with the audio signal. The EEG was then split up into sub-epochs of 50 ms length and sorted according to the stimulation level. ASSR was estimated for each level for both scalp- and ear-EEG.Main results. Significant ASSRs with increasing amplitude as a function of presentation level were recorded from both scalp and ear electrode configurations.Significance. Utilizing natural sounds in ASSR estimation offers the potential for electrophysiological hearing assessment that are more comfortable and less fatiguing compared to existing ASSR methods. Combined with ear-EEG, this approach may allow convenient hearing threshold estimation in everyday life, utilizing ambient sounds. Additionally, it may facilitate both initial fitting and subsequent adjustments of hearing aids outside of clinical settings.


Subject(s)
Hearing , Sound , Humans , Acoustic Stimulation/methods , Auditory Threshold/physiology , Electroencephalography/methods
2.
Res Sq ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464203

ABSTRACT

Hu8F4 is a T cell receptor (TCR)-like antibody with high affinity for leukemia-associated antigen PR1/HLA-A2 epitope. Adapted into a chimeric antigen receptor (CAR) format, Hu8F4-CAR is comprised of the Hu8F4 scFv, the human IgG1 CH2CH3 extracellular spacer domain, a human CD28 costimulatory domain, and the human CD3ζ signaling domain. We have demonstrated high efficacy of Hu8F4-CAR-T cells against PR1/HLA-A2-expressing cell lines and leukemic blasts from AML patients in vitro. Previous studies have shown that modification of the Fc domains of IgG4 CH2CH3 spacer regions can eliminate activation-induced cell death and off-target killing mediated by mouse Fc gamma receptor (FcgR)-expressing cells. We generated Hu8F4-CAR(PQ) with mutated Fc receptor binding sites on the CH2 domain of Hu8F4-CAR to prevent unwanted interactions with FcgR-expressing cells in vivo. The primary human T cells transduced with Hu8F4-CAR(PQ) can specifically lyse HLA-A2+ PR1-expressing leukemia cell lines in vitro. Furthermore, both adult donor-derived and cord blood-derived Hu8F4-CAR(PQ)-T cells are active and can eliminate U937 leukemia cells in NSG mice. Herein, we demonstrate that modification of the IgG1-based spacer can eliminate Fc receptor-binding-induced adverse effects and Hu8F4-CAR(PQ)-T cells can kill leukemia in vivo.

3.
RSC Adv ; 14(9): 6178-6189, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38375011

ABSTRACT

Understanding and controlling spin dynamics in organic dyes is of significant scientific and technological interest. The investigation of 2,5-dihydropyrrolo[4,3-c]pyrrolo-1,4-dione derivatives (DPPs), one of the most widely used dyes in many fields, has so far been limited to closed-shell molecules. We present a comprehensive joint experimental and computational study of DPP derivatives covalently linked to two nitronyl nitroxide radicals (DPPTh-NN2). Synthesis, single crystal X-ray diffraction study, photophysical properties, magnetic properties established using steady-state and pulse EPR, fast spin dynamics, and computational modelling using density functional theory and ab initio methods of electronic structure and spectroscopic properties of DPPTh-NN2 are presented. The single-crystal X-ray diffraction analysis of DPPTh-NN2 and computational modeling of its electronic structure suggest that effective conjugation along the backbone leads to noticeable spin-polarization transfer. Calculations using ab initio methods predict a weak exchange interaction of radical centers through a singlet ground state of DPPTh with a small singlet-triplet splitting (ΔEST) of about 25 cm-1 (∼0.07 kcal mol-1). In turn, a strong ferromagnetic exchange interaction between the triplet state of DPPTh chromophore and nitronyl nitroxides (with J ∼ 250 cm-1) was predicted.

4.
Ear Hear ; 45(3): 626-635, 2024.
Article in English | MEDLINE | ID: mdl-38178314

ABSTRACT

OBJECTIVES: The auditory steady-state response (ASSR) enables hearing threshold estimation based on electroencephalography (EEG) recordings. The choice of stimulus type has an impact on both the detectability and the frequency specificity of the ASSR. Amplitude modulated pure tones provide the most frequency-specific ASSR, but responses to pure tones are weak. The ASSR can be enhanced by increasing the bandwidth of the stimulus, but this comes at the cost of a decrease in the frequency specificity of the measured response. The objective of the present study is to investigate the relationship between stimulus bandwidth and ASSR amplitude. DESIGN: The amplitude of ASSR was measured for five types of stimuli: 1 kHz pure tone and band-pass noise with 1/3, 1/2, 1, and 2 octave bandwidths centered at 1 kHz. All stimuli were amplitude modulated with a 40 Hz sinusoid. Responses to all stimulus types were measured at 30, 40, and 50 dB SL. ASSRs were measured concurrently using both conventional scalp-EEG and ear-EEG. RESULTS: Stimulus bandwidth and sound intensity were both found to have a significant effect on the ASSR amplitude for scalp- and ear-EEG recordings. In scalp-EEG ASSRs to all bandwidth stimuli were found to be significantly larger than ASSRs to pure tone at low sound intensity. At higher sound intensities, however, significantly larger responses were only obtained for 1- and 2-octave bandwidth stimuli. In ear-EEG, only the ASSR to 2 octave bandwidth stimulus was significantly larger than the ASSR to amplitude modulated pure tones. CONCLUSIONS: At low presentation levels, even small increases in stimulus bandwidth (1/3 and 1/2 octave) improve the detectability of ASSR in scalp-EEG with little or no impact on the frequency specificity. In comparison, a larger increase in stimulus bandwidth was needed to improve the ASSR detectability in the ear-EEG recordings.


Subject(s)
Hearing , Scalp , Humans , Acoustic Stimulation , Auditory Threshold/physiology , Hearing/physiology , Electroencephalography , Evoked Potentials, Auditory/physiology
5.
Article in English | MEDLINE | ID: mdl-36083931

ABSTRACT

Auditory steady-state responses (ASSRs) enable hearing threshold estimation based on electrophysiological measurements and are widely used in clinical practice. Traditionally, ASSRs are recorded from a few electroencephalography (EEG) electrodes placed on the scalp. Ear-EEG is a method in which the EEG is recorded from electrodes placed within or around the ear and is thus more suitable for use in everyday life. Ear-EEG is typically recorded from multiple electrodes in order to enhance redundancy and robustness, but a pair of electrodes (so-called "best pair") is usually chosen for the further analysis. Spatial filtering uses an optimized weighted combination of the electrodes, and is thus in general a better method for analysis of multichannel EEG. In this study we propose a new spatial filtering method based on solving a constrained optimization problem. Empirical evaluation based on ear-EEG recorded from nine subjects shows that the proposed spatial filtering method provides a significant increase in ASSR SNR as compared to the conventional "best pair" method. Clinical Relevance - ASSR can be estimated from ear-EEG recordings. Integrating ear-EEG into hearing aids would allow hearing aids to characterize hearing loss and thereby adjust the audio processing accordingly.


Subject(s)
Electroencephalography , Hearing Aids , Electrodes , Electroencephalography/methods , Humans , Records , Scalp
6.
Front Oncol ; 11: 652063, 2021.
Article in English | MEDLINE | ID: mdl-33937058

ABSTRACT

Multiple myeloma (MM) affects ~500,000 people and results in ~100,000 deaths annually, being currently considered treatable but incurable. There are several MM chemotherapy treatment regimens, among which eleven include bortezomib, a proteasome-targeted drug. MM patients respond differently to bortezomib, and new prognostic biomarkers are needed to personalize treatments. However, there is a shortage of clinically annotated MM molecular data that could be used to establish novel molecular diagnostics. We report new RNA sequencing profiles for 53 MM patients annotated with responses on two similar chemotherapy regimens: bortezomib, doxorubicin, dexamethasone (PAD), and bortezomib, cyclophosphamide, dexamethasone (VCD), or with responses to their combinations. Fourteen patients received both PAD and VCD; six received only PAD, and 33 received only VCD. We compared profiles for the good and poor responders and found five genes commonly regulated here and in the previous datasets for other bortezomib regimens (all upregulated in the good responders): FGFR3, MAF, IGHA2, IGHV1-69, and GRB14. Four of these genes are linked with known immunoglobulin locus rearrangements. We then used five machine learning (ML) methods to build a classifier distinguishing good and poor responders for two cohorts: PAD + VCD (53 patients), and separately VCD (47 patients). We showed that the application of FloWPS dynamic data trimming was beneficial for all ML methods tested in both cohorts, and also in the previous MM bortezomib datasets. However, the ML models build for the different datasets did not allow cross-transferring, which can be due to different treatment regimens, experimental profiling methods, and MM heterogeneity.

7.
Plant Direct ; 5(1): e00302, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33506166

ABSTRACT

The perennial life style is a successful ecological strategy, and Arabis alpina is a recently developed model Brassicaceae species for studying it. One aspect, poorly investigated until today, concerns the differing patterns of allocation, storage, and metabolism of nutrients between perennials and annuals and the yet unknown signals that regulate this process. A. alpina has a complex lateral stem architecture with a proximal vegetative perennial (PZ) and a distal annual flowering zone (AZ) inside the same stems. Lipid bodies (LBs) with triacylglycerols (TAGs) accumulate in the PZ. To identify potential processes of lipid metabolism linked with the perennial lifestyle, we analyzed lipid species in the PZ versus AZ. Glycerolipid fractions, including neutral lipids with mainly TAGs, phospholipids, and glycolipids, were present at higher levels in the PZ as compared to AZ or roots. Concomitantly, contents of specific long-chain and very long-chain fatty acids increased during formation of the PZ. Corresponding gene expression data, gene ontology term enrichment, and correlation analysis with lipid species pinpoint glycerolipid-related genes to be active during the development of the PZ. Possibilities that lipid metabolism genes may be targets of regulatory mechanisms specifying PZ differentiation in A. alpina are discussed.

8.
Plant J ; 105(6): 1459-1476, 2021 03.
Article in English | MEDLINE | ID: mdl-33336445

ABSTRACT

Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.


Subject(s)
Arabis/metabolism , Cytokinins/metabolism , Plant Stems/metabolism , Arabis/growth & development , Gene Expression Profiling , Lipid Metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Stems/growth & development , Starch/metabolism
9.
J Drugs Dermatol ; 19(4): 405-411, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32272518

ABSTRACT

Background/Objectives: Treatment options for the correction of age-related changes in skin include the use of energy-based devices and dermal fillers. In this study, we evaluate the clinical efficacy and tolerability of microfocused ultrasound with visualization (MFU-V) and injectable calcium hydroxylapatite (CaHA) filler diluted with normal saline, for the correction of age-related changes and to assess patients' satisfaction with this combination therapy. Methods: This was a randomized, split-face, comparative clinical study and immunohistochemical analysis in 20 subjects with indications for lower face, neck and décolleté lifting. Over five visits, CaHA diluted with normal saline (1:2) was injected subdermally in the lower third of the face, neck and décolleté, and lower abdominal quadrant. MFU-V was performed on the lower third of the face, neck, and décolleté, and the right lower abdominal quadrant. Results: Upon baseline examination, the age-related changes were quantified as follows: marionette lines score 2.47 ± 0.8, jawline contour score 2.2 ± 0.7 and neck score 2.1 ± 0.7 points; and after 15 months, they changed to 1.8 ± 0.7 (P≤0.00003), 1.89 ± 0.56 (P≤0.005), and 1.7 ± 0.6 (P≤0.005) points, respectively. The procedures were well tolerated, and subject satisfaction was high. Conclusions: The injections of CaHA in combination with MFU-V treatment stimulated neoangiogenesis, led to the increased synthetic activity of cells, a marked increase in collagen and elastin fibers, and remodeling of both the superficial and deep layers of the dermis. An improvement in the severity of age-related changes was observed in all areas studied. J Drugs Dermatol. 2020;19(4):405-411. doi:10.36849/JDD.2020.4625.


Subject(s)
Biocompatible Materials/therapeutic use , Durapatite/therapeutic use , Facial Dermatoses/therapy , Skin Aging , Ultrasonic Therapy , Adult , Biocompatible Materials/administration & dosage , Combined Modality Therapy , Durapatite/administration & dosage , Facial Dermatoses/pathology , Female , Humans , Injections, Subcutaneous , Patient Satisfaction , Treatment Outcome
10.
Sci Data ; 6(1): 36, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015567

ABSTRACT

Comprehensive analysis of molecular pathology requires a collection of reference samples representing normal tissues from healthy donors. For the available limited collections of normal tissues from postmortal donors, there is a problem of data incompatibility, as different datasets generated using different experimental platforms often cannot be merged in a single panel. Here, we constructed and deposited the gene expression database of normal human tissues based on uniformly screened original sequencing data. In total, 142 solid tissue samples representing 20 organs were taken from post-mortal human healthy donors of different age killed in road accidents no later than 36 hours after death. Blood samples were taken from 17 healthy volunteers. We then compared them with the 758 transcriptomic profiles taken from the other databases. We found that overall 463 biosamples showed tissue-specific rather than platform- or database-specific clustering and could be aggregated in a single database termed Oncobox Atlas of Normal Tissue Expression (ANTE). Our data will be useful to all those working with the analysis of human gene expression.


Subject(s)
Databases, Genetic , Organ Specificity/genetics , Sequence Analysis, RNA , Transcriptome , Gene Expression Profiling , Humans
11.
Br J Haematol ; 185(4): 679-690, 2019 05.
Article in English | MEDLINE | ID: mdl-30828801

ABSTRACT

Acute myeloid leukaemia (AML) is a lethal haematological malignancy characterized by an immunosuppressive milieu in the tumour microenvironment (TME) that fosters disease growth and therapeutic resistance. Hypomethylating agents (HMAs) demonstrate clinical efficacy in AML patients and exert immunomodulatory activities. In the present study, we show that guadecitabine augments both antigen processing and presentation, resulting in increased AML susceptibility to T cell-mediated killing. Exposure to HMA results in the activation of the endogenous retroviral pathway with concomitant downstream amplification of critical mediators of inflammation. In an immunocompetent murine leukaemia model, guadecitabine negatively regulates inhibitory accessory cells in the TME by decreasing PD-1 (also termed PDCD1) expressing T cells and reducing AML-mediated expansion of myeloid-derived suppressor cells. Therapy with guadecitabine results in enhanced leukaemia-specific immunity, as manifested by increased CD4 and CD8 cells targeting syngeneic leukaemia cells. We have previously reported that vaccination with AML/dendritic cell fusions elicits the expansion of leukaemia-specific T cells and protects against disease relapse. In the present study, we demonstrate that vaccination in conjunction with HMA therapy results in enhanced anti-leukaemia immunity and survival. The combination of a novel personalized dendritic cell/AML fusion vaccine and an HMA has therapeutic potential, and a clinical trial investigating this combination is planned.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Azacitidine/analogs & derivatives , Cancer Vaccines/immunology , Leukemia, Myeloid, Acute/drug therapy , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents, Immunological/immunology , Azacitidine/immunology , Azacitidine/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , DNA Methylation/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/immunology , Humans , Immunity, Cellular/drug effects , Leukemia, Myeloid, Acute/immunology , Mice, Inbred C57BL , Neoplasm Transplantation , Programmed Cell Death 1 Receptor/metabolism , Retroviridae/immunology , Virus Activation/immunology
12.
Clin Cancer Res ; 24(14): 3386-3396, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29661776

ABSTRACT

Purpose: PR1 is a human leukocyte antigen (HLA)-A2 nonameric peptide derived from neutrophil elastase (NE) and proteinase 3 (P3). We have previously shown that PR1 is cross-presented by solid tumors, leukemia, and antigen-presenting cells, including B cells. We have also shown that cross-presentation of PR1 by solid tumors renders them susceptible to killing by PR1-targeting immunotherapies. As multiple myeloma is derived from B cells, we investigated whether multiple myeloma is also capable of PR1 cross-presentation and subsequently capable of being targeted by using PR1 immunotherapies.Experimental Design: We tested whether multiple myeloma is capable of cross-presenting PR1 and subsequently becomes susceptible to PR1-targeting immunotherapies, using multiple myeloma cell lines, a xenograft mouse model, and primary multiple myeloma patient samples.Results: Here we show that multiple myeloma cells lack endogenous NE and P3, are able to take up exogenous NE and P3, and cross-present PR1 on HLA-A2. Cross-presentation by multiple myeloma utilizes the conventional antigen processing machinery, including the proteasome and Golgi, and is not affected by immunomodulating drugs (IMiD). Following PR1 cross-presentation, we are able to target multiple myeloma with PR1-CTL and anti-PR1/HLA-A2 antibody both in vitro and in vivoConclusions: Collectively, our data demonstrate that PR1 is a novel tumor-associated antigen target in multiple myeloma and that multiple myeloma is susceptible to immunotherapies that target cross-presented antigens. Clin Cancer Res; 24(14); 3386-96. ©2018 AACR.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , HLA-A2 Antigen/immunology , Multiple Myeloma/immunology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/immunology , Animals , Antigen Presentation/drug effects , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Biological Transport , Cell Line, Tumor , Complement Activation , Cross-Priming/drug effects , Cross-Priming/immunology , Cytotoxicity, Immunologic , Disease Models, Animal , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Immunologic Factors/pharmacology , Immunomodulation/drug effects , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Proteasome Endopeptidase Complex/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Xenograft Model Antitumor Assays
13.
Front Immunol ; 9: 3153, 2018.
Article in English | MEDLINE | ID: mdl-30713535

ABSTRACT

Despite substantial advances in the treatment of acute myeloid leukemia (AML), only 30% of patients survive more than 5 years. Therefore, new therapeutics are much needed. Here, we present a novel therapeutic strategy targeting PR1, an HLA-A2 restricted myeloid leukemia antigen. Previously, we have developed and characterized a novel T-cell receptor-like monoclonal antibody (8F4) that targets PR1/HLA-A2 and eliminates AML xenografts by antibody-dependent cellular cytotoxicity (ADCC). To improve the potency of 8F4, we adopted a strategy to link T-cell cytotoxicity with a bi-specific T-cell-engaging antibody that binds PR1/HLA-A2 on leukemia and CD3 on neighboring T-cells. The 8F4 bi-specific antibody maintained high affinity and specific binding to PR1/HLA-A2 comparable to parent 8F4 antibody, shown by flow cytometry and Bio-Layer Interferometry. In addition, 8F4 bi-specific antibody activated donor T-cells in the presence of HLA-A2+ primary AML blasts and cell lines in a dose dependent manner. Importantly, activated T-cells lysed HLA-A2+ primary AML blasts and cell lines after addition of 8F4 bi-specific antibody. In conclusion, our studies demonstrate the therapeutic potential of a novel bi-specific antibody targeting the PR1/HLA-A2 leukemia-associated antigen, justifying further clinical development of this strategy.


Subject(s)
Antibodies, Bispecific/immunology , Antigens, Neoplasm/immunology , HLA-A2 Antigen/immunology , Leukemia, Myeloid, Acute/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/pharmacology , Antibody Specificity/immunology , Antigens, Neoplasm/metabolism , CHO Cells , Cell Line , Cricetulus , Cytotoxicity, Immunologic , HLA-A2 Antigen/metabolism , Humans , Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Lymphocyte Activation , Protein Binding , T-Lymphocytes/metabolism
14.
J Biol Chem ; 292(24): 10295-10305, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28468826

ABSTRACT

Neutrophil elastase (NE) can be rapidly taken up by tumor cells that lack endogenous NE expression, including breast cancer, which results in cross-presentation of PR1, an NE-derived HLA-A2-restricted peptide that is an immunotherapy target in hematological and solid tumor malignancies. The mechanism of NE uptake, however, remains unknown. Using the mass spectrometry-based approach, we identify neuropilin-1 (NRP1) as a NE receptor that mediates uptake and PR1 cross-presentation in breast cancer cells. We demonstrated that soluble NE is a specific, high-affinity ligand for NRP1 with a calculated Kd of 38.7 nm Furthermore, we showed that NRP1 binds to the RRXR motif in NE. Notably, NRP1 knockdown with interfering RNA or CRISPR-cas9 system and blocking using anti-NRP1 antibody decreased NE uptake and, subsequently, susceptibility to lysis by PR1-specific cytotoxic T cells. Expression of NRP1 in NRP1-deficient cells was sufficient to induce NE uptake. Altogether, because NRP1 is broadly expressed in tumors, our findings suggest a role for this receptor in immunotherapy strategies that target cross-presented antigens.


Subject(s)
Absorption, Physiological , Breast Neoplasms/metabolism , Cross-Priming , Leukocyte Elastase/metabolism , Neoplasm Proteins/metabolism , Neuropilin-1/metabolism , Amino Acid Motifs , Antibodies, Blocking/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Line, Tumor , Female , Humans , Kinetics , Leukocyte Elastase/chemistry , Leukocyte Elastase/immunology , Ligands , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/chemistry , Neuropilin-1/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
15.
Cancer Res ; 77(12): 3144-3150, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28428279

ABSTRACT

Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a nonproteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short timeframe. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. Cancer Res; 77(12); 3144-50. ©2017 AACR.


Subject(s)
Antigens, Neoplasm/metabolism , Mitogen-Activated Protein Kinases/metabolism , Myeloblastin/metabolism , Neoplasm Invasiveness/pathology , Prostatic Neoplasms/pathology , Tumor Microenvironment/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Neoplasms/secondary , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/physiology , Heterografts , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Prostatic Neoplasms/metabolism
16.
Genome Res ; 27(2): 234-245, 2017 02.
Article in English | MEDLINE | ID: mdl-28148562

ABSTRACT

According to the current view, each microRNA regulates hundreds of genes. Computational tools aim at identifying microRNA targets, usually selecting evolutionarily conserved microRNA binding sites. While the false positive rates have been evaluated for some prediction programs, that information is rarely put forward in studies making use of their predictions. Here, we provide evidence that such predictions are often biologically irrelevant. Focusing on miR-223-guided repression, we observed that it is often smaller than inter-individual variability in gene expression among wild-type mice, suggesting that most predicted targets are functionally insensitive to that microRNA. Furthermore, we found that human haplo-insufficient genes tend to bear the most highly conserved microRNA binding sites. It thus appears that biological functionality of microRNA binding sites depends on the dose-sensitivity of their host gene and that, conversely, it is unlikely that every predicted microRNA target is dose-sensitive enough to be functionally regulated by microRNAs. We also observed that some mRNAs can efficiently titrate microRNAs, providing a reason for microRNA binding site conservation for inefficiently repressed targets. Finally, many conserved microRNA binding sites are conserved in a microRNA-independent fashion: Sequence elements may be conserved for other reasons, while being fortuitously complementary to microRNAs. Collectively, our data suggest that the role of microRNAs in normal and pathological conditions has been overestimated due to the frequent overlooking of false positive rates.


Subject(s)
Gene Expression Regulation/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , 3' Untranslated Regions/genetics , Algorithms , Animals , Binding Sites , Computational Biology , Humans , Mice , MicroRNAs/metabolism
18.
Cytotherapy ; 18(8): 985-994, 2016 08.
Article in English | MEDLINE | ID: mdl-27265873

ABSTRACT

BACKGROUND AIMS: The PR1 peptide, derived from the leukemia-associated antigens proteinase 3 and neutrophil elastase, is overexpressed on HLA-A2 in acute myeloid leukemia (AML). We developed a T-cell receptor (TCR)-like monoclonal antibody (8F4) that binds the PR1/HLA-A2 complex on the surface of AML cells, efficiently killing them in vitro and eliminating them in preclinical models. Humanized 8F4 (h8F4) with high affinity for the PR1/HLA-A2 epitope was used to construct an h8F4- chimeric antigen receptor (CAR) that was transduced into T cells to mediate anti-leukemia activity. METHODS: Human T cells were transduced to express the PR1/HLA-A2-specific CAR (h8F4-CAR-T cells) containing the scFv of h8F4 fused to the intracellular signaling endo-domain of CD3 zeta chain through the transmembrane and intracellular costimulatory domain of CD28. RESULTS: Adult human normal peripheral blood (PB) T cells were efficiently transduced with the h8F4-CAR construct and predominantly displayed an effector memory phenotype with a minor population (12%) of central memory cells in vitro. Umbilical cord blood (UCB) T cells could also be efficiently transduced with the h8F4-CAR. The PB and UCB-derived h8F4-CAR-T cells specifically recognized the PR1/HLA-A2 complex and were capable of killing leukemia cell lines and primary AML blasts in an HLA-A2-dependent manner. CONCLUSIONS: Human adult PB and UCB-derived T cells expressing a CAR derived from the TCR-like 8F4 antibody rapidly and efficiently kill AML in vitro. Our data could lead to a new treatment paradigm for AML in which targeting leukemia stem cells could transfer long-term immunity to protect against relapse.


Subject(s)
Fetal Blood , HLA-A2 Antigen/immunology , Leukemia, Myeloid, Acute/therapy , Leukocytes, Mononuclear/metabolism , Myeloblastin/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Adult , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Cell Line , Epitopes/immunology , Fetal Blood/cytology , Fetal Blood/immunology , Genetic Therapy , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunotherapy, Adoptive/methods , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Leukocytes, Mononuclear/immunology , Myeloblastin/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , T-Cell Antigen Receptor Specificity , T-Lymphocytes/immunology
19.
Clin Cancer Res ; 19(1): 247-57, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23147993

ABSTRACT

PURPOSE: Immunotherapy targeting aberrantly expressed leukemia-associated antigens has shown promise in the management of acute myeloid leukemia (AML). However, because of the heterogeneity and clonal evolution that is a feature of myeloid leukemia, targeting single peptide epitopes has had limited success, highlighting the need for novel antigen discovery. In this study, we characterize the role of the myeloid azurophil granule protease cathepsin G (CG) as a novel target for AML immunotherapy. EXPERIMENTAL DESIGN: We used Immune Epitope Database and in vitro binding assays to identify immunogenic epitopes derived from CG. Flow cytometry, immunoblotting, and confocal microscopy were used to characterize the expression and processing of CG in AML patient samples, leukemia stem cells, and normal neutrophils. Cytotoxicity assays determined the susceptibility of AML to CG-specific cytotoxic T lymphocytes (CTL). Dextramer staining and cytokine flow cytometry were conducted to characterize the immune response to CG in patients. RESULTS: CG was highly expressed and ubiquitinated in AML blasts, and was localized outside granules in compartments that facilitate antigen presentation. We identified five HLA-A*0201 binding nonameric peptides (CG1-CG5) derived from CG, and showed immunogenicity of the highest HLA-A*0201 binding peptide, CG1. We showed killing of primary AML by CG1-CTL, but not normal bone marrow. Blocking HLA-A*0201 abrogated CG1-CTL-mediated cytotoxicity, further confirming HLA-A*0201-dependent killing. Finally, we showed functional CG1-CTLs in peripheral blood from AML patients following allogeneic stem cell transplantation. CONCLUSION: CG is aberrantly expressed and processed in AML and is a novel immunotherapeutic target that warrants further development.


Subject(s)
Cathepsin G/immunology , HLA-A2 Antigen/immunology , Leukemia, Myeloid, Acute/immunology , Peptides/immunology , ADP-ribosyl Cyclase 1/metabolism , Antigens, CD34/metabolism , Cathepsin G/chemistry , Cathepsin G/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic , Epitopes/immunology , Epitopes/metabolism , HLA-A2 Antigen/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Immunotherapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Peptides/metabolism , Protein Binding/immunology , Protein Transport , T-Lymphocytes, Cytotoxic/immunology , Transplantation, Homologous
20.
J Immunol ; 189(11): 5476-84, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23105141

ABSTRACT

PR1 is a HLA-A2-restricted peptide that has been targeted successfully in myeloid leukemia with immunotherapy. PR1 is derived from the neutrophil granule proteases proteinase 3 (P3) and neutrophil elastase (NE), which are both found in the tumor microenvironment. We recently showed that P3 and NE are taken up and cross-presented by normal and leukemia-derived APCs, and that NE is taken up by breast cancer cells. We now extend our findings to show that P3 and NE are taken up and cross-presented by human solid tumors. We further show that PR1 cross-presentation renders human breast cancer and melanoma cells susceptible to killing by PR1-specific CTLs (PR1-CTL) and the anti-PR1/HLA-A2 Ab 8F4. We also show PR1-CTL in peripheral blood from patients with breast cancer and melanoma. Together, our data identify cross-presentation as a novel mechanism through which cells that lack endogenous expression of an Ag become susceptible to therapies that target cross-presented Ags and suggest PR1 as a broadly expressed tumor Ag.


Subject(s)
Antigens, Neoplasm/immunology , Breast Neoplasms/therapy , Immunotherapy , Leukocyte Elastase/immunology , Melanoma/therapy , Myeloblastin/immunology , Skin Neoplasms/therapy , Antibodies/pharmacology , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigens, Neoplasm/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cross-Priming , Female , HLA-A2 Antigen/immunology , Humans , Leukocyte Elastase/chemistry , Melanoma/immunology , Melanoma/pathology , Molecular Targeted Therapy , Myeloblastin/chemistry , Peptide Fragments/chemistry , Peptide Fragments/immunology , Skin Neoplasms/immunology , Skin Neoplasms/pathology , T-Lymphocytes, Cytotoxic/immunology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...