Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 336: 127711, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32777656

ABSTRACT

Wrinkled and round peas (two varieties each type) cultivated in two locations were milled to obtain fine and coarse wrinkled (WPF) and round pea flour (RPF). WPF exhibited markedly increased pasting viscosities at 120 and 140 °C compared with 95 °C. Overall, the pasting properties of WPF were considerably lower than those of RPF. Resistant starch (RS) contents of cooked WPF (17.2-22.2%, dsb) were significantly larger than those of RPF (7.9-11.4%), resulting from higher starch gelatinization temperatures, greater amylose contents, and presence of more protein and fiber in WPF. The two particle sizes affected the water-holding capacity (WHC) of WPF, gelatinization enthalpy changes (ΔH) of WPF and RPF, and pasting properties and starch digestibility of RPF. Pearson correlation and principal component analysis (PCA) were conducted to reveal the relationships among the techno-functional parameters of pea flours. Wrinkled pea showed promise to generate new pea flours with distinct functionality and enhanced nutritional value.


Subject(s)
Flour , Pisum sativum/chemistry , Amylose/chemistry , Dietary Fiber/metabolism , Digestion , Flour/analysis , Nutritive Value , Particle Size , Plant Proteins, Dietary/analysis , Starch/chemistry , Starch/pharmacokinetics , Temperature , Viscosity
2.
Food Res Int ; 122: 263-272, 2019 08.
Article in English | MEDLINE | ID: mdl-31229080

ABSTRACT

In the present study, yellow pea (CDC Amarillo) and faba bean (CDC Snowdrop) seeds were soaked overnight and then germinated in the dark at ambient temperature for 24, 48 and 72 h. During the short-term germination, germination percentages higher than 96.6% were achieved and progressive growth of radicles was observed for both varieties. The soaked and germinated seeds were dried at 55 °C and milled into flours, and their chemical compositions, physicochemical properties and in vitro starch and protein digestibility were systematically examined. Overall, soaking and germination did not noticeably alter the chemical compositions of each flour. The most obvious changes in the physicochemical properties were found in the pasting, emulsifying and foaming properties of the pulse flours. Soaking and 24-h germination greatly enhanced the pasting viscosities of the flours; as the germination proceeded, their viscosities gradually decreased, resulting from the degradation of starch by endogenous amylase(s) during pasting. Germination progressively improved the emulsion activity and stability, foaming capacity and foam stability of both pulse flours. In addition, germination enhanced the in vitro digestibility of starch and protein of the flours; however, the treatment did not improve their in vitro protein digestibility corrected amino acid scores (IV-PDCAAS). Short-term germination of 24-72 h has been demonstrated to be an effective approach to generating pulse flours possessing diverse functional properties and enhanced digestibility of macronutrients.


Subject(s)
Flour/analysis , Germination/physiology , Nutritive Value/physiology , Pisum sativum/chemistry , Vicia faba/chemistry , Chemical Phenomena , Flour/standards
3.
Food Chem ; 276: 599-607, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30409638

ABSTRACT

This study aimed to isolate starches of a high purity from starch-rich pea, lentil and faba bean flours and to characterize and compare the isolated starches with important commercial starches. Isolated pulse starches had a purity of 94.8-97.9% and contained only 0.9-1.1% damaged starch. The isolated pulse starches showed amylose contents and amylopectin branch-chain-length distributions similar to those of commercial pea starch. Therefore, the granular morphologies, crystalline structure, thermal properties, pasting properties, gelling ability and in vitro digestibility of the isolated pulse starches were comparable to those of commercial pea starch but different from those of commercial maize and tapioca starches. The desirable functionality of the pulse starches (e.g., strong gelling ability) renders them suitable for some specific industrial applications, and further modifications can be utilized to enhance their functionality for broader use. This research provided the fundamental knowledge required for future efforts to promote value-added utilization of pulse starches.


Subject(s)
Air , Flour/analysis , Lens Plant/chemistry , Pisum sativum/chemistry , Starch/chemistry , Starch/isolation & purification , Vicia faba/chemistry , Amylopectin/analysis , Amylose/analysis
SELECTION OF CITATIONS
SEARCH DETAIL