Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sci Rep ; 14(1): 12641, 2024 06 02.
Article En | MEDLINE | ID: mdl-38825663

In many countries with wastewater irrigation and intensive use of fertilizers (minerals and organics), heavy metal deposition by crops is regarded as a major environmental concern. A study was conducted to determine the impact of mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse on soil's trace Pb content and edible parts of vegetables. It also evaluated the risk of lead (Pb) contamination in water, soil, and food crops. Six vegetables (Daucus carota, Brassica oleracea, Pisum sativum, Solanum tuberosum, Raphanus sativus, and Spinacia oleracea) were grown in the field under twelve treatments with different nutrient and water inputs. The lead concentrations in soil, vegetables for all treatments and water samples ranged from 1.038-10.478, 0.09346-9.0639 mg/kg and 0.036-0.26448 mg/L, The concentration of lead in soil treated with wastewater in treatment (T6) and vegetable samples was significantly higher, exceeding the WHO's permitted limit. Mineral and organic fertilizers combined with wastewater treatment reduced lead (Pb) concentrations in vegetables compared to wastewater application without organic fertilizers. Health risk indexes for all treatments except wastewater treatment (T6) were less than one. Pb concentrations in mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse treated were determined to pose no possible risk to consumers.


Fertilizers , Lead , Manure , Vegetables , Wastewater , Fertilizers/analysis , Vegetables/metabolism , Vegetables/chemistry , Manure/analysis , Wastewater/chemistry , Wastewater/analysis , Lead/analysis , Lead/metabolism , Animals , Soil Pollutants/analysis , Soil/chemistry , Cattle , Crops, Agricultural/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/chemistry , Minerals/analysis
2.
BMC Plant Biol ; 24(1): 378, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724893

Pakistan's economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn't have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it.


Citrus , Fruit , Plant Diseases , Plant Leaves , Xanthomonas axonopodis , Citrus/microbiology , Xanthomonas axonopodis/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Diseases/microbiology , Fruit/microbiology , Minerals/metabolism , Minerals/analysis , Chlorophyll/metabolism , Pakistan
3.
Ecotoxicol Environ Saf ; 271: 115938, 2024 Feb.
Article En | MEDLINE | ID: mdl-38218102

Chemical fertilizers are the primary source of crop nutrition; however, their increasing rate of application has created environmental hazards, such as heavy metal toxicity and eutrophication. The synchronized use of chemical fertilizers and eco-friendly biological tools, such as microorganisms and biochar, may provide an efficient foundation to promote sustainable agriculture. Therefore, the current study aimed to optimize the nutrient uptake using an inorganic fertilizer, sulfate of potash (SOP) from the plant growth-promoting fungus Bipolaris maydis AF7, and biochar under heavy metal toxicity conditions in rice. Bioassay analysis showed that AF7 has high resistance to heavy metals and a tendency to produce gibberellin, colonize the fertilizer, and increase the intake of free amino acids. In the plant experiment, the co-application of AF7 +Biochar+MNF+SOP significantly lowered the heavy metal toxicity, enhanced the nutrient uptake in the rice shoots, and improved the morphological attributes (total biomass). Moreover, the co-application augmented the glucose and sucrose levels, whereas it significantly lowered the endogenous phytohormone levels (salicylic acid and jasmonic acid) in the rice shoots. The increase in nutrient content aligns with the higher expression of the OsLSi6, PHT1, and OsHKT1 genes. The plant growth traits and heavy metal tolerance of AF7 were validated by whole-genome sequencing that showed the presence of the heavy metal tolerance and detoxification protein, siderophore iron transporter, Gibberellin cluster GA4 desaturase, and DES_1 genes, as well as others that regulate glucose, antioxidants, and amino acids. Because the AF7 +biochar+inorganic fertilizer works synergistically, nutrient availability to the crops could be improved, and heavy metal toxicity and environmental hazards could be minimized.


Bipolaris , Metals, Heavy , Oryza , Soil/chemistry , Fertilizers/analysis , Oryza/genetics , Gibberellins/pharmacology , Charcoal/pharmacology , Charcoal/chemistry , Metals, Heavy/analysis , Genomics , Fungi , Amino Acids , Glucose
4.
BioTech (Basel) ; 12(4)2023 Dec 11.
Article En | MEDLINE | ID: mdl-38131678

Salinity hinders plant growth, posing a substantial challenge to sustainable agricultural yield maintenance. The application of plant growth-promoting rhizobacteria (PGPR) offers an emerging strategy to mitigate the detrimental effects of high salinity levels. This study aimed to isolate and identify gibberellin-producing bacteria and their impact on the seed germination of Malva verticillata (mallow) and Brassica oleracea var. italica (broccoli) under salt stress. In this study, seven bacterial isolates (KW01, KW02, KW03, KW04, KW05, KW06, and KW07) were used to assess their capacity for producing various growth-promoting traits and their tolerance to varying amounts of salinity (100 mM and 150 Mm NaCl). The findings revealed that KW05 and KW07 isolates outperformed other isolates in synthesizing indole-3-acetic acid, siderophores, and exopolysaccharides and in solubilizing phosphates. These isolates also enhanced phosphatase activity and antioxidant levels, including superoxide dismutase and catalase. Both KW05 and KW07 isolate highlight the growth-promoting effects of gibberellin by enhancing of growth parameters of Waito-C rice. Further, gas chromatography-mass spectrometry validation confirmed the ability of KW05 and KW07 to produce gibberellins (GAs), including GA1, GA3, GA4, and GA7. Seed germination metrics were enhanced due to the inoculation of KW05 and KW07. Moreover, inoculation with KW05 increased the fresh weight (FW) (7.82%) and total length (38.61%) of mallow under salt stress. Inoculation with KW07 increased the FW (32.04%) and shoot length of mallow under salt stress. A single inoculation of these two isolates increased broccoli plants' FW and shoot length under salt stress. Gibberellin-producing bacteria helps in plant growth promotion by improving salt tolerance by stimulating root elongation and facilitating enhanced absorption of water and nutrient uptake in salty environments. Based on these findings, they can play a role in boosting agricultural yield in salt-affected areas, which would help to ensure the long-term viability of agriculture in coastal regions.

5.
Front Plant Sci ; 14: 1237295, 2023.
Article En | MEDLINE | ID: mdl-37929163

Phytohormones play vital roles in stress modulation and enhancing the growth of plants. They interact with one another to produce programmed signaling responses by regulating gene expression. Environmental stress, including drought stress, hampers food and energy security. Drought is abiotic stress that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a prime controller during an acute transient response that leads to stomatal closure. Under long-term stress conditions, ABA interacts with other hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and brassinosteroids (BRs), to promote stomatal closure by regulating genetic expression. Regarding antagonistic approaches, cytokinins (CK) and auxins (IAA) regulate stomatal opening. Exogenous application of phytohormone enhances drought stress tolerance in soybean. Thus, phytohormone-producing microbes have received considerable attention from researchers owing to their ability to enhance drought-stress tolerance and regulate biological processes in plants. The present study was conducted to summarize the role of phytohormones (exogenous and endogenous) and their corresponding microbes in drought stress tolerance in model plant soybean. A total of n=137 relevant studies were collected and reviewed using different research databases.

6.
Front Plant Sci ; 14: 1188856, 2023.
Article En | MEDLINE | ID: mdl-37377805

Plants are adapted to defend themselves through programming, reprogramming, and stress tolerance against numerous environmental stresses, including heavy metal toxicity. Heavy metal stress is a kind of abiotic stress that continuously reduces various crops' productivity, including soybeans. Beneficial microbes play an essential role in improving plant productivity as well as mitigating abiotic stress. The simultaneous effect of abiotic stress from heavy metals on soybeans is rarely explored. Moreover, reducing metal contamination in soybean seeds through a sustainable approach is extremely needed. The present article describes the initiation of heavy metal tolerance mediated by plant inoculation with endophytes and plant growth-promoting rhizobacteria, the identification of plant transduction pathways via sensing annotation, and contemporary changes from molecular to genomics. The results suggest that the inoculation of beneficial microbes plays a significant role in rescuing soybeans under heavy metal stress. They create a dynamic, complex interaction with plants via a cascade called plant-microbial interaction. It enhances stress metal tolerance via the production of phytohormones, gene expression, and secondary metabolites. Overall, microbial inoculation is essential in mediating plant protection responses to heavy metal stress produced by a fluctuating climate.

7.
Int J Mol Sci ; 24(10)2023 May 09.
Article En | MEDLINE | ID: mdl-37239837

Drought is one of the most detrimental factors that causes significant effects on crop development and yield. However, the negative effects of drought stress may be alleviated with the aid of exogenous melatonin (MET) and the use of plant-growth-promoting bacteria (PGPB). The present investigation aimed to validate the effects of co-inoculation of MET and Lysinibacillus fusiformis on hormonal, antioxidant, and physio-molecular regulation in soybean plants to reduce the effects of drought stress. Therefore, ten randomly selected isolates were subjected to various plant-growth-promoting rhizobacteria (PGPR) traits and a polyethylene-glycol (PEG)-resistance test. Among these, PLT16 tested positive for the production of exopolysaccharide (EPS), siderophore, and indole-3-acetic acid (IAA), along with higher PEG tolerance, in vitro IAA, and organic-acid production. Therefore, PLT16 was further used in combination with MET to visualize the role in drought-stress mitigation in soybean plant. Furthermore, drought stress significantly damages photosynthesis, enhances ROS production, and reduces water stats, hormonal signaling and antioxidant enzymes, and plant growth and development. However, the co-application of MET and PLT16 enhanced plant growth and development and improved photosynthesis pigments (chlorophyll a and b and carotenoids) under both normal conditions and drought stress. This may be because hydrogen-peroxide (H2O2), superoxide-anion (O2-), and malondialdehyde (MDA) levels were reduced and antioxidant activities were enhanced to maintain redox homeostasis and reduce the abscisic-acid (ABA) level and its biosynthesis gene NCED3 while improving the synthesis of jasmonic acid (JA) and salicylic acid (SA) to mitigate drought stress and balance the stomata activity to maintain the relative water states. This may be possible due to a significant increase in endo-melatonin content, regulation of organic acids, and enhancement of nutrient uptake (calcium, potassium, and magnesium) by co-inoculated PLT16 and MET under normal conditions and drought stress. In addition, co-inoculated PLT16 and MET modulated the relative expression of DREB2 and TFs bZIP while enhancing the expression level of ERD1 under drought stress. In conclusion, the current study found that the combined application of melatonin and Lysinibacillus fusiformis inoculation increased plant growth and could be used to regulate plant function during drought stress as an eco-friendly and low-cost approach.


Bacillaceae , Drought Resistance , Glycine max , Melatonin , Oxidative Stress , Plant Growth Regulators , Melatonin/pharmacology , Drought Resistance/drug effects , Glycine max/drug effects , Glycine max/metabolism , Glycine max/microbiology , Polyethylene Glycols/pharmacology , Polysaccharides, Bacterial/metabolism , Siderophores/metabolism , Plant Growth Regulators/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
8.
Front Plant Sci ; 14: 1118941, 2023.
Article En | MEDLINE | ID: mdl-37180396

Wheat is one of the major cereal crop grown food worldwide and, therefore, plays has a key role in alleviating the global hunger crisis. The effects of drought stress can reduces crop yields by up to 50% globally. The use of drought-tolerant bacteria for biopriming can improve crop yields by countering the negative effects of drought stress on crop plants. Seed biopriming can reinforce the cellular defense responses to stresses via the stress memory mechanism, that its activates the antioxidant system and induces phytohormone production. In the present study, bacterial strains were isolated from rhizospheric soil taken from around the Artemisia plant at Pohang Beach, located near Daegu, in the South Korea Republic of Korea. Seventy-three isolates were screened for their growth-promoting attributes and biochemical characteristics. Among them, the bacterial strain SH-8 was selected preferred based on its plant growth-promoting bacterial traits, which are as follows: abscisic acid (ABA) concentration = 1.08 ± 0.05 ng/mL, phosphate-solubilizing index = 4.14 ± 0.30, and sucrose production = 0.61 ± 0.13 mg/mL. The novel strain SH-8 demonstrated high tolerance oxidative stress. The antioxidant analysis also showed that SH-8 contained significantly higher levels of catalase (CAT), superoxide dismutase (SOD), and ascorbic peroxidase (APX). The present study also quantified and determined the effects of biopriming wheat (Triticum aestivum) seeds with the novel strain SH-8. SH-8 was highly effective in enhancing the drought tolerance of bioprimed seeds; their drought tolerance and germination potential (GP) were increased by up to 20% and 60%, respectively, compared with those in the control group. The lowest level of impact caused by drought stress and the highest germination potential, seed vigor index (SVI), and germination energy (GE) (90%, 2160, and 80%, respectively), were recorded for seeds bioprimed with with SH-8. These results show that SH-8 enhances drought stress tolerance by up to 20%. Our study suggests that the novel rhizospheric bacterium SH-8 (gene accession number OM535901) is a valuable biostimulant that improves drought stress tolerance in wheat plants and has the potential to be used as a biofertilizer under drought conditions.

9.
Front Plant Sci ; 13: 1004331, 2022.
Article En | MEDLINE | ID: mdl-36340407

Bacterial adhesion potential constitutes the transition of bacteria from the planktonic to the static phase by promoting biofilm formation, which plays a significant role in plant-microbial interaction in the agriculture industry. In present study, the adhesion potential of five soil-borne bacterial strains belonging to different genera was studied. All bacterial strains were capable of forming colonies and biofilms of different levels of firmness on polystyrene. Significant variation was observed in hydrophobicity and motility assays. Among the five bacterial strains (SH-6, SH-8, SH-9, SH-10, and SH-19), SH-19 had a strong hydrophobic force, while SH-10 showed the most hydrophilic property. SH-6 showed great variability in motility; SH-8 had a swimming diffusion diameter of 70 mm, which was three times higher than that of SH-19. In the motility assay, SH-9 and SH-10 showed diffusion diameters of approximately 22 mm and 55 mm, respectively. Furthermore, among the five strains, four are predominately electron donors and one is electron acceptors. Overall, positive correlation was observed among Lewis acid base properties, hydrophobicity, and biofilm forming ability. However, no correlation of motility with bacterial adhesion could be found in present experimental work. Scanning electron microscopy images confirmed the adhesion potential and biofilm ability within extra polymeric substances. Research on the role of adhesion in biofilm formation of bacteria isolated from plants is potentially conducive for developing strategies such as plant-microbial interaction to mitigate the abiotic stress.

10.
Chemosphere ; 308(Pt 3): 136575, 2022 Dec.
Article En | MEDLINE | ID: mdl-36155020

Melatonin (MT), a ubiquitous signaling molecule, is known to improve plant growth. Its regulatory function alongside nitric oxide (NO) is known to induce heavy metal (Cd and Pb) stress tolerance, although the underlying mechanisms remain unknown. Here, we observed that the combined application of MT and NO remarkably enhanced plant biomass by reducing oxidative stress. Both MT and NO minimized metal toxicity by significantly lowering the levels of endogenous abscisic acid and jasmonic acid via downregulating NCED3 and upregulating catabolic genes (CYP707A1 and CYP707A2). MT/NO-induced mitigation of Cd and Pb stress was associated with increased endo-melatonin and variable endo-S-nitrosothiol levels caused by enhanced expression of gmNR and gmGSNOR mRNAs. Remarkably, the combined application of MT/NO reduced soil Cd and Pb mobilization by increasing the uptake of Ca2+ and K+ and increasing the exudation of organic acids into the rhizosphere. These results correlated with the upregulation of MTF-1 and WARKY27 during metal translocation. MT/NO regulates the MAPK and CDPK cascades to promote plant cell survival and Ca2+ signaling, thereby imparting resistance to heavy metal toxicity. In conclusion, MT/NO modulates the stress-resistance machinery to mitigate Cd and Pb toxicity by regulating the activation of antioxidant and molecular transcription factors.


Melatonin , Metals, Heavy , S-Nitrosothiols , Abscisic Acid , Antioxidants/metabolism , Antioxidants/pharmacology , Cadmium/analysis , Lead/toxicity , Melatonin/metabolism , Melatonin/pharmacology , Metals, Heavy/toxicity , Nitric Oxide/pharmacology , Plants/metabolism , Soil , Glycine max/genetics , Glycine max/metabolism , Transcription Factors
11.
Microorganisms ; 10(7)2022 Jun 24.
Article En | MEDLINE | ID: mdl-35889005

Among abiotic stresses, heat stress is described as one of the major limiting factors of crop growth worldwide, as high temperatures elicit a series of physiological, molecular, and biochemical cascade events that ultimately result in reduced crop yield. There is growing interest among researchers in the use of beneficial microorganisms. Intricate and highly complex interactions between plants and microbes result in the alleviation of heat stress. Plant-microbe interactions are mediated by the production of phytohormones, siderophores, gene expression, osmolytes, and volatile compounds in plants. Their interaction improves antioxidant activity and accumulation of compatible osmolytes such as proline, glycine betaine, soluble sugar, and trehalose, and enriches the nutrient status of stressed plants. Therefore, this review aims to discuss the heat response of plants and to understand the mechanisms of microbe-mediated stress alleviation on a physio-molecular basis. This review indicates that microbes have a great potential to enhance the protection of plants from heat stress and enhance plant growth and yield. Owing to the metabolic diversity of microorganisms, they can be useful in mitigating heat stress in crop plants. In this regard, microorganisms do not present new threats to ecological systems. Overall, it is expected that continued research on microbe-mediated heat stress tolerance in plants will enable this technology to be used as an ecofriendly tool for sustainable agronomy.

12.
Plants (Basel) ; 11(13)2022 Jun 24.
Article En | MEDLINE | ID: mdl-35807630

Maize is the third most common cereal crop worldwide, after rice and wheat, and plays a vital role in preventing global hunger crises. Approximately 50% of global crop yields are reduced by drought stress. Bacteria as biostimulants for biopriming can improve yield and enhance sustainable food production. Further, seed biopriming stimulates plant defense mechanisms. In this study, we isolated bacteria from the rhizosphere of Artemisia plants from Pohang beach, Daegu, South Korea. Twenty-three isolates were isolated and screened for growth promoting potential. Among them, bacterial isolate SH-6 was selected based on maximum induced tolerance to polyethylene glycol-simulated drought. SH-6 showed ABA concentration = 1.06 ± 0.04 ng/mL, phosphate solubilizing index = 3.7, and sucrose concentration = 0.51 ± 0.13 mg/mL. The novel isolate SH-6 markedly enhanced maize seedling tolerance to oxidative stress owing to the presence of superoxide dismutase, catalase, and ascorbate peroxidase activities in the culture media. Additionally, we quantified and standardized the biopriming effect of SH-6 on maize seeds. SH-6 significantly increased maize seedling drought tolerance by up to 20%, resulting in 80% germination potential. We concluded that the novel bacterium isolate SH-6 (gene accession number (OM757882) is a biostimulant that can improve germination performance under drought stress.

13.
Front Plant Sci ; 13: 870626, 2022.
Article En | MEDLINE | ID: mdl-35665140

Plants defend themselves against ecological stresses including drought. Therefore, they adopt various strategies to cope with stress, such as seepage and drought tolerance mechanisms, which allow plant development under drought conditions. There is evidence that microbes play a role in plant drought tolerance. In this study, we presented a review of the literature describing the initiation of drought tolerance mediated by plant inoculation with fungi, bacteria, viruses, and several bacterial elements, as well as the plant transduction pathways identified via archetypal functional or morphological annotations and contemporary "omics" technologies. Overall, microbial associations play a potential role in mediating plant protection responses to drought, which is an important factor for agricultural manufacturing systems that are affected by fluctuating climate.

...