Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 19(2): 281-312, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38017137

ABSTRACT

Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.


Subject(s)
Aegilops , Triticum , Humans , Triticum/genetics , Aegilops/genetics , Plant Breeding , Chromosome Mapping , Polyploidy
2.
J Genet Genomics ; 49(3): 185-194, 2022 03.
Article in English | MEDLINE | ID: mdl-34838726

ABSTRACT

Aegilops tauschii, the wild progenitor of wheat D-genome and a valuable germplasm for wheat improvement, has a wide natural distribution from eastern Turkey to China. However, the phylogenetic relationship and dispersion history of Ae. tauschii in China has not been scientifically clarified. In this study, we genotyped 208 accessions (with 104 in China) using ddRAD sequencing and 55K SNP array, and classified the population into six sublineages. Three possible spreading routes or events were identified, resulting in specific distribution patterns, with four sublineages found in Xinjiang, one in Qinghai, two in Shaanxi and one in Henan. We also established the correlation of SNP-based, karyotype-based and spike-morphology-based techniques to demonstrate the internal classification of Ae. tauschii, and developed consensus dataset with 1245 putative accessions by merging data previously published. Our analysis suggested that eight inter-lineage accessions could be assigned to the putative Lineage 3 and these accessions would help to conserve the genetic diversity of the species. By developing the consensus phylogenetic relationships of Ae. tauschii, our work validated the hypothesis on the dispersal history of Ae. tauschii in China, and contributed to the efficient and comprehensive germplasm-mining of the species.


Subject(s)
Aegilops , China , Genotype , Phylogeny , Poaceae/genetics , Triticum/genetics
3.
Nat Plants ; 7(6): 774-786, 2021 06.
Article in English | MEDLINE | ID: mdl-34045708

ABSTRACT

Increasing crop production is necessary to feed the world's expanding population, and crop breeders often utilize genetic variations to improve crop yield and quality. However, the narrow diversity of the wheat D genome seriously restricts its selective breeding. A practical solution is to exploit the genomic variations of Aegilops tauschii via introgression. Here, we established a rapid introgression platform for transferring the overall genetic variations of A. tauschii to elite wheats, thereby enriching the wheat germplasm pool. To accelerate the process, we assembled four new reference genomes, resequenced 278 accessions of A. tauschii and constructed the variation landscape of this wheat progenitor species. Genome comparisons highlighted diverse functional genes or novel haplotypes with potential applications in wheat improvement. We constructed the core germplasm of A. tauschii, including 85 accessions covering more than 99% of the species' overall genetic variations. This was crossed with elite wheat cultivars to generate an A. tauschii-wheat synthetic octoploid wheat (A-WSOW) pool. Laboratory and field analysis with two examples of the introgression lines confirmed its great potential for wheat breeding. Our high-quality reference genomes, genomic variation landscape of A. tauschii and the A-WSOW pool provide valuable resources to facilitate gene discovery and breeding in wheat.


Subject(s)
Aegilops/genetics , Genetic Introgression , Genome, Plant , Plant Breeding/methods , Triticum/genetics , DNA Transposable Elements , Genetics, Population , Multigene Family/genetics , Phylogeny , Plant Proteins/genetics , Polyploidy , Quantitative Trait Loci , Seeds/genetics , Seeds/growth & development
4.
BMC Plant Biol ; 20(1): 486, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33097005

ABSTRACT

BACKGROUND: Drought stress is the most harmful one among other abiotic stresses with negative impacts on crop growth and development. Drought-hardening is a feasible and widely used method in tobacco seedlings cultivation. It has gained extensive interests due to its role in improving drought tolerance. This research aimed to investigate the role of drought-hardening and to unravel the multiple mechanisms underlying tobacco drought tolerance and adaptation. RESULTS: This study was designed in which various drought-hardening treatments (CK (no drought-hardening), T1 (drought-hardening for 24 h), T2 (drought-hardening for 48 h), and T3 (drought-hardening for 72 h)) were applied to two tobacco varieties namely HongHuaDaJinYuan (H) and Yun Yan-100 (Y). The findings presented a complete framework of drought-hardening effect at physiological, biochemical, and gene expression levels of the two tobacco varieties under drought stress. The results showed that T2 and T3 significantly reduced the growth of the two varieties under drought stress. Similarly, among the various drought-hardening treatments, T3 improved both the enzymatic (POD, CAT, APX) and non-enzymatic (AsA) defense systems along with the elevated levels of proline and soluble sugar to mitigate the negative effects of oxidative damage and bringing osmoregulation in tobacco plants. Finally, the various drought-hardening treatments (T1, T2, and T3) showed differential regulation of genes expressed in the two varieties, while, particularly T3 drought-hardening treatment-induced drought tolerance via the expression of various stress-responsive genes by triggering the biosynthesis pathways of proline (P5CS1), polyamines (ADC2), ABA-dependent (SnRK2, AREB1), and independent pathways (DREB2B), and antioxidant defense-related genes (CAT, APX1, GR2) in response to drought stress. CONCLUSIONS: Drought-hardening made significant contributions to drought tolerance and adaptation in two tobacco variety seedlings by reducing its growth and, on the other hand, by activating various defense mechanisms at biochemical and molecular levels. The findings of the study pointed out that drought-hardening is a fruitful strategy for conferring drought tolerance and adaptations in tobacco. It will be served as a useful method in the future to understand the drought tolerance and adaptation mechanisms of other plant species. Drought-hardening improved drought tolerance and adaptation of the two tobacco varieties. T1 indicates drought-hardening for 24 h, T2 indicates drought-hardening for 48 h, T3 indicates drought-hardening for 72 h.


Subject(s)
Nicotiana/physiology , Adaptation, Physiological , Ascorbic Acid/metabolism , Chlorophyll/metabolism , Crop Production/methods , Dehydration , Fluorescence , Gene Expression Regulation, Plant/physiology , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oxidation-Reduction , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Proline/metabolism , Nicotiana/growth & development , Nicotiana/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL