Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nat Cardiovasc Res ; 2(10): 899-916, 2023 Oct.
Article En | MEDLINE | ID: mdl-38076343

Patients with coronavirus disease 2019 (COVID-19) present increased risk for ischemic cardiovascular complications up to 1 year after infection. Although the systemic inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques remains unknown. Here we report that SARS-CoV-2 viral RNA is detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and human atherosclerotic vascular explants with secretion of cytokines known to trigger cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing plaque inflammation that could trigger acute cardiovascular complications and increase the long-term cardiovascular risk.

2.
Nat Cardiovasc Res ; 2(6): 550-571, 2023 Jun.
Article En | MEDLINE | ID: mdl-37771373

The development of new immunotherapies to treat the inflammatory mechanisms that sustain atherosclerotic cardiovascular disease (ASCVD) is urgently needed. Herein, we present a path to drug repurposing to identify immunotherapies for ASCVD. The integration of time-of-flight mass cytometry and RNA sequencing identified unique inflammatory signatures in peripheral blood mononuclear cells stimulated with ASCVD plasma. By comparing these inflammatory signatures to large-scale gene expression data from the LINCS L1000 dataset, we identified drugs that could reverse this inflammatory response. Ex vivo screens, using human samples, showed that saracatinib-a phase 2a-ready SRC and ABL inhibitor-reversed the inflammatory responses induced by ASCVD plasma. In Apoe-/- mice, saracatinib reduced atherosclerosis progression by reprogramming reparative macrophages. In a rabbit model of advanced atherosclerosis, saracatinib reduced plaque inflammation measured by [18F] fluorodeoxyglucose positron emission tomography-magnetic resonance imaging. Here we show a systems immunology-driven drug repurposing with a preclinical validation strategy to aid the development of cardiovascular immunotherapies.

3.
bioRxiv ; 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37645908

COVID-19 patients present higher risk for myocardial infarction (MI), acute coronary syndrome, and stroke for up to 1 year after SARS-CoV-2 infection. While the systemic inflammatory response to SARS-CoV-2 infection likely contributes to this increased cardiovascular risk, whether SARS-CoV-2 directly infects the coronary vasculature and attendant atherosclerotic plaques to locally promote inflammation remains unknown. Here, we report that SARS-CoV-2 viral RNA (vRNA) is detectable and replicates in coronary atherosclerotic lesions taken at autopsy from patients with severe COVID-19. SARS-CoV-2 localizes to plaque macrophages and shows a stronger tropism for arterial lesions compared to corresponding perivascular fat, correlating with the degree of macrophage infiltration. In vitro infection of human primary macrophages highlights that SARS-CoV-2 entry is increased in cholesterol-loaded macrophages (foam cells) and is dependent, in part, on neuropilin-1 (NRP-1). Furthermore, although viral replication is abortive, SARS-CoV-2 induces a robust inflammatory response that includes interleukins IL-6 and IL-1ß, key cytokines known to trigger ischemic cardiovascular events. SARS-CoV-2 infection of human atherosclerotic vascular explants recapitulates the immune response seen in cultured macrophages, including pro-atherogenic cytokine secretion. Collectively, our data establish that SARS-CoV-2 infects macrophages in coronary atherosclerotic lesions, resulting in plaque inflammation that may promote acute CV complications and long-term risk for CV events.

5.
Nat Med ; 25(10): 1576-1588, 2019 10.
Article En | MEDLINE | ID: mdl-31591603

Atherosclerosis is driven by multifaceted contributions of the immune system within the circulation and at vascular focal sites. However, specific characteristics of dysregulated immune cells within atherosclerotic lesions that lead to clinical events such as ischemic stroke or myocardial infarction are poorly understood. Here, using single-cell proteomic and transcriptomic analyses, we uncovered distinct features of both T cells and macrophages in carotid artery plaques of patients with clinically symptomatic disease (recent stroke or transient ischemic attack) compared to asymptomatic disease (no recent stroke). Plaques from symptomatic patients were characterized by a distinct subset of CD4+ T cells and by T cells that were activated and differentiated. Moreover, some T cell subsets in these plaques presented markers of T cell exhaustion. Additionally, macrophages from these plaques contained alternatively activated phenotypes, including subsets associated with plaque vulnerability. In plaques from asymptomatic patients, T cells and macrophages were activated and displayed evidence of interleukin-1ß signaling. The identification of specific features of innate and adaptive immune cells in plaques that are associated with cerebrovascular events may enable the design of more precisely tailored cardiovascular immunotherapies.


Atherosclerosis/immunology , Interleukin-1beta/genetics , Plaque, Atherosclerotic/metabolism , Single-Cell Analysis , Adaptive Immunity/genetics , Aged , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Differentiation/genetics , Endarterectomy, Carotid , Female , Humans , Immunity, Innate/genetics , Interleukin-1beta/immunology , Leukocytes, Mononuclear , Macrophages/immunology , Macrophages/metabolism , Male , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Proteome/genetics , Proteome/immunology , Signal Transduction/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
...