Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 125
1.
Biochem Pharmacol ; 226: 116338, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38848780

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.

2.
Biosens Bioelectron ; 261: 116469, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38850738

Despite high sensitivity of nanoparticle-on-mirror cavities, a crucial branch of plasmonic nanomaterials, complex preparation and readout processes limit their extensive application in biosensing. Alternatively, liquid metals (LMs) combining fluidity and excellent plasmonic characteristics have become potential candidates for constructing plasmonic nanostructures. Herein, we propose a microfluidic-integration strategy to construct LM-based immunoassay platform, enabling LM-based nanoplasmonic sensors to be used for point-of-care (POC) clinical biomarker detection. Flowable LM is introduced onto protein-coated Au nanoparticle monolayer to form a "mirror-on-nanoparticle" nanostructure, simplifying the fabrication process in the conventional nanoparticle-on-mirror cavities. When antibodies were captured by antigens coated on the Au nanoparticle monolayer, devices respond both thickness and refractive index change of biomolecular layers, outputting naked-eye readable signals with high sensitivity (limit of detection: ∼ 604 fM) and a broad dynamic range (6 orders). This new assay, which generates quantitative results in 30 min, allows for high-throughput, smartphone-based detection of SARS-CoV-2 antibodies against multiple variants in clinical serum or blood samples. These results establish an advanced avenue for POC testing with LM materials, and demonstrate its potential to facilitate diagnostics, surveillance and prevalence studies for various infectious diseases.

3.
Mol Biol Rep ; 51(1): 627, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717532

MicroRNAs (miRNAs) are short, non-coding single-stranded RNA molecules approximately 22 nucleotides in length, intricately involved in post-transcriptional gene expression regulation. Over recent years, researchers have focused keenly on miRNAs, delving into their mechanisms in various diseases such as cancers. Among these, miR-26a emerges as a pivotal player in respiratory ailments such as pneumonia, idiopathic pulmonary fibrosis, lung cancer, asthma, and chronic obstructive pulmonary disease. Studies have underscored the significance of miR-26a in the pathogenesis and progression of respiratory diseases, positioning it as a promising therapeutic target. Nevertheless, several challenges persist in devising medical strategies for clinical trials involving miR-26a. In this review, we summarize the regulatory role and significance of miR-26a in respiratory diseases, and we analyze and elucidate the challenges related to miR-26a druggability, encompassing issues such as the efficiency of miR-26a, delivery, RNA modification, off-target effects, and the envisioned therapeutic potential of miR-26a in clinical settings.


Gene Expression Regulation , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Respiratory Tract Diseases/genetics , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/metabolism , Asthma/genetics , Asthma/therapy , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/therapy
4.
Nano Lett ; 23(23): 10892-10900, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38047611

Novel high-throughput protein detection technologies are critically needed for population-based large-scale SARS-CoV-2 antibody detection as well as for monitoring quality and duration of immunity against virus variants. Current protein microarray techniques rely heavily on labeled transduction methods that require sophisticated instruments and complex operations, limiting their clinical potential, particularly for point-of-care (POC) applications. Here, we developed a label-free and naked-eye readable microarray (NRM) based on a thickness-sensing plasmon ruler, enabling antibody profiling within 30 min. The NRM chips provide 100% accuracy for neutralizing antibody detection by efficiently screening antigen types and experimental conditions and allow for the profiling of antibodies against multiple SARS-CoV-2 variants in clinical samples. We further established a flexible "barcode" NRM assay with a simple tape-based operation, enabling an effective smartphone-based readout and analysis. These results demonstrate new strategies for high-throughput protein detection and highlight the potential of novel protein microarray techniques for realistic clinical applications.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Antibodies, Neutralizing
5.
Front Microbiol ; 14: 1252709, 2023.
Article En | MEDLINE | ID: mdl-37849920

Phytoplasmas are phloem-limited plant pathogens, such as sugarcane white leaf (SCWL) phytoplasma, which are responsible for heavy economic losses to the sugarcane industry. Characterization of phytoplasmas has been limited because they cannot be cultured in vitro. However, with the advent of genome sequencing, different aspects of phytoplasmas are being investigated. In this study, we developed a DNA enrichment method for sugarcane white leaf (SCWL) phytoplasma, evaluated the effect of DNA enrichment via Illumina sequencing technologies, and utilized Illumina and Nanopore sequencing technologies to obtain the complete genome sequence of the "Candidatus Phytoplasma sacchari" isolate SCWL1 that is associated with sugarcane white leaf in China. Illumina sequencing analysis elucidated that only 1.21% of the sequencing reads from total leaf DNA were mapped to the SCWL1 genome, whereas 40.97% of the sequencing reads from the enriched DNA were mapped to the SCWL1 genome. The genome of isolate SCWL1 consists of a 538,951 bp and 2976 bp long circular chromosome and plasmid, respectively. We identified 459 protein-encoding genes, 2 complete 5S-23S-16S rRNA gene operons, 27 tRNA genes, and an incomplete potential mobile unit (PMU) in the circular chromosome. Phylogenetic analyses and average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values based on the sequenced genome revealed that SCWL phytoplasma and sugarcane grassy shoot (SCGS) phytoplasma belonged to the same phytoplasma species. This study provides a genomic DNA enrichment method for phytoplasma sequencing. Moreover, we report the first complete genome of a "Ca. Phytoplasma sacchari" isolate, thus contributing to future studies on the evolutionary relationships and pathogenic mechanisms of "Ca. Phytoplasma sacchari" isolates.

6.
Genes (Basel) ; 14(9)2023 08 28.
Article En | MEDLINE | ID: mdl-37761853

In recent years, the sugarcane streak mosaic virus (SCSMV) has been the primary pathogen of sugarcane mosaic disease in southern China. In this study, the complete genome of a sugarcane mosaic sample (named YN-21) from Kaiyuan City, Yunnan Province, was amplified and sequenced. By comparing the amino acid sequences of YN-21 and 15 other SCSMV isolates from the NCBI database, the protease recognition site of SCSMV was determined. YN-21 had the highest nucleotide and amino acid identities of 97.66% and 99.30%, respectively, in comparison with the SCSMV isolate (JF488066). The P1 had the highest variability of 83.38-99.72% in the amino acid sequence, and 6K2 was the most conserved, with 97.92-100% amino acid sequence identity. A phylogenetic analysis of nucleotide and amino acid sequences clustered the 16 SCSMV isolates into two groups. All the Chinese isolates were clustered into the same group, and YN-21 was closely related to the Yunnan and Hainan isolates in China. Recombination analysis showed no major recombination sites in YN-21. Selective pressure analysis showed that the dN/dS values of 11 proteins of SCSMV were less than 1, all of which were undergoing negative selection. These results can provide practical guidance for monitoring SCSMV epidemics and genetics.


Edible Grain , Nucleotides , China , Phylogeny , Sequence Analysis , Genomics
7.
iScience ; 26(10): 107888, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37766986

This study found that the level of neuroepithelial cell-transforming gene 1 protein (NET1) was significantly increased in a mouse cardiac fibrosis model. Moreover, the expression level of NET1 was increased in cardiac fibrosis induced by TGF-ß1, suggesting that NET1 was involved in the pathological process of cardiac fibrosis. Overexpression of NET1 promoted ß-catenin expression in the nucleus and significantly increased the proliferation and migration of cardiac fibroblasts. NET1 may form a complex with ß-catenin through GSK3ß. Knockdown of ß-catenin alleviated the effects of NET1 overexpression on collagen production and cell migration. In the heart of NET1 knockout mice, NET1 knockout can reduce the expression of ß-catenin, α-SMA, and collagen content induced by MI. In conclusion, NET1 may regulate the activation of Wnt/ß-catenin and TGF/Smads signaling pathway, promote collagen synthesis in fibroblasts, and participate in cardiac fibrosis. Thus, NET1 may be a potential therapeutic target in cardiac fibrosis.

8.
MedComm (2020) ; 4(5): e348, 2023 Oct.
Article En | MEDLINE | ID: mdl-37593048

Myocardial fibrosis post myocardial infarction (MI) is characterized by abnormal extracellular matrix (ECM) deposition and cardiac dysfunction could finally develop into serious heart disease, like heart failure. Lots of regulating factors involved in this pathological process have been reported while the specific mediators and underlying mechanisms remain to need to be further investigated. As part of the NAP1 family, Nucleosome assembly protein 1 like 1 (NAP1L1) is expressed in a wide variety of tissues. Here, we report that NAP1L1 is a significant regulator of cardiac fibrosis and is upregulated in ischemic cardiomyopathy patient hearts. Enhanced expression of NAP1L1 can promote cardiac fibroblasts (CFs) proliferation, migration, and differentiation into myofibroblasts. In contrast, loss of NAP1L1 decreased fibrosis-related mRNA and protein levels, inhibited the trans-differentiation, and blunted migration and proliferation of CFs after Transforming Growth Factorß1(TGF-ß1)stimulation. In vivo, NAP1L1 knockout mice enhanced cardiac function and reduced fibrosis area in response to MI stimuli. Mechanically, NAP1L1 binding to Yes-associated protein 1 (YAP1) protein influences its stability, and silencing NAP1L1 can inhibit YAP1 expression by promoting its ubiquitination and degradation in CFs. Collectively, NAP1L1 could potentially be a new therapeutic target for various cardiac disorders, including myocardial fibrosis.

9.
Plants (Basel) ; 12(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37570959

Sugarcane mosaic disease, mainly caused by Sugarcane streak mosaic virus (SCSMV), has serious adverse effects on the yield and quality of sugarcane. Eukaryotic translation initiation factor 4E (eIF4E) is a natural resistance gene in plants. The eIF4E-mediated natural recessive resistance results from non-synonymous mutations of the eIF4E protein. In this study, two sugarcane varieties, CP94-1100 and ROC22, were selected for analysis of their differences in resistance to SCSMV. Four-base missense mutations in the ORF region of eIF4E resulted in different conserved domains. Therefore, the differences in resistance to SCSMV are due to the inherent differences in eIF4E of the sugarcane varieties. The coding regions of eIF4E included 28 SNP loci and no InDel loci, which were affected by negative selection and were relatively conserved. A total of 11 haploids encoded 11 protein sequences. Prediction of the protein spatial structure revealed three non-synonymous mutation sites for amino acids located in the cap pocket of eIF4E; one of these sites existed only in a resistant material (Yuetang 55), whereas the other site existed only in a susceptible material (ROC22), suggesting that these two sites might be related to the resistance to SCSMV. The results provide a strong basis for further analysis of the functional role of eIF4E in regulating mosaic resistance in sugarcane.

10.
Cell Chem Biol ; 30(10): 1248-1260.e4, 2023 10 19.
Article En | MEDLINE | ID: mdl-37442135

Speckle-type pox virus and zinc finger (POZ) protein (SPOP), a substrate recognition adaptor of cullin-3 (CUL3)/RING-type E3 ligase complex, is investigated for its role in cardiac fibrosis in our study. Cardiac fibroblasts (CFs) activation was achieved with TGF-ß1 (20 ng/mL) and MI mouse model was established by ligation of the left anterior descending coronary, and lentivirus was employed to mediate interference of SPOP expression. SPOP was increased both in fibrotic post-MI mouse hearts and TGF-ß1-treated CFs. The gain-of-function of SPOP promoted myofibroblast transformation in CFs, and exacerbated cardiac fibrosis and cardiac dysfunction in MI mice, while the loss-of-function of SPOP exhibited the opposite effects. Mechanistically, SPOP bound to the receptor of activated protein C kinase 1 (RACK1) and induced its ubiquitination and degradation by recognizing Ser/Thr-rich motifs on RACK1, leading to Smad3-mediated activation of CFs. Forced RACK1 expression canceled the effects of SPOP on cardiac fibrosis. The study reveals therapeutic targets for fibrosis-related cardiac diseases.


Myocardial Infarction , Transforming Growth Factor beta1 , Animals , Mice , Fibrosis , Myocardial Infarction/complications , Myocardial Infarction/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptors for Activated C Kinase , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
11.
Cell Death Dis ; 14(5): 344, 2023 05 30.
Article En | MEDLINE | ID: mdl-37253771

Cardiac hypertrophy is a common structural remodeling in many cardiovascular diseases. Recently, long non-coding RNAs (LncRNAs) were found to be involved in the physiological and pathological processes of cardiac hypertrophy. In this study, we found that LncRNA KCND1 (LncKCND1) was downregulated in both transverse aortic constriction (TAC)-induced hypertrophic mouse hearts and Angiotensin II (Ang II)-induced neonatal mouse cardiomyocytes. Further analyses showed that the knockdown of LncKCND1 impaired cardiac mitochondrial function and led to hypertrophic changes in cardiomyocytes. In contrast, overexpression of LncKCND1 inhibited Ang II-induced cardiomyocyte hypertrophic changes. Importantly, enhanced expression of LncKCND1 protected the heart from TAC-induced pathological cardiac hypertrophy and improved heart function in TAC mice. Subsequent analyses involving mass spectrometry and RNA immunoprecipitation assays showed that LncKCND1 directly binds to YBX1. Furthermore, overexpression of LncKCND1 upregulated the expression level of YBX1, while silencing LncKCND1 had the opposite effect. Furthermore, YBX1 was downregulated during cardiac hypertrophy, whereas overexpression of YBX1 inhibited Ang II-induced cardiomyocyte hypertrophy. Moreover, silencing YBX1 reversed the effect of LncKCND1 on cardiomyocyte mitochondrial function and its protective role in cardiac hypertrophy, suggesting that YBX1 is a downstream target of LncKCND1 in regulating cardiac hypertrophy. In conclusion, our study provides mechanistic insights into the functioning of LncKCND1 and supports LncKCND1 as a potential therapeutic target for pathological cardiac hypertrophy.


RNA, Long Noncoding , Transcription Factors , Animals , Mice , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Shal Potassium Channels/metabolism , Transcription Factors/metabolism
13.
Circ Res ; 132(2): 208-222, 2023 01 20.
Article En | MEDLINE | ID: mdl-36656967

OBJECTIVE: ASPP1 (apoptosis stimulating of p53 protein 1) is critical in regulating cell apoptosis as a cofactor of p53 to promote its transcriptional activity in the nucleus. However, whether cytoplasmic ASPP1 affects p53 nuclear trafficking and its role in cardiac diseases remains unknown. This study aims to explore the mechanism by which ASPP1 modulates p53 nuclear trafficking and the subsequent contribution to cardiac ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: The immunofluorescent staining showed that under normal condition ASPP1 and p53 colocalized in the cytoplasm of neonatal mouse ventricular cardiomyocytes, while they were both upregulated and translocated to the nuclei upon hypoxia/reoxygenation treatment. The nuclear translocation of ASPP1 and p53 was interdependent, as knockdown of either ASPP1 or p53 attenuated nuclear translocation of the other one. Inhibition of importin-ß1 resulted in the cytoplasmic sequestration of both p53 and ASPP1 in neonatal mouse ventricular cardiomyocytes with hypoxia/reoxygenation stimulation. Overexpression of ASPP1 potentiated, whereas knockdown of ASPP1 inhibited the expression of Bax (Bcl2-associated X), PUMA (p53 upregulated modulator of apoptosis), and Noxa, direct apoptosis-associated targets of p53. ASPP1 was also increased in the I/R myocardium. Cardiomyocyte-specific transgenic overexpression of ASPP1 aggravated I/R injury as indicated by increased infarct size and impaired cardiac function. Conversely, knockout of ASPP1 mitigated cardiac I/R injury. The same qualitative data were observed in neonatal mouse ventricular cardiomyocytes exposed to hypoxia/reoxygenation injury. Furthermore, inhibition of p53 significantly blunted the proapoptotic activity and detrimental effects of ASPP1 both in vitro and in vivo. CONCLUSIONS: Binding of ASPP1 to p53 triggers their nuclear cotranslocation via importin-ß1 that eventually exacerbates cardiac I/R injury. The findings imply that interfering the expression of ASPP1 or the interaction between ASPP1 and p53 to block their nuclear trafficking represents an important therapeutic strategy for cardiac I/R injury.


Adaptor Proteins, Signal Transducing , Reperfusion Injury , Tumor Suppressor Protein p53 , Animals , Mice , Apoptosis/physiology , Hypoxia/metabolism , Ischemia/metabolism , Karyopherins , Myocytes, Cardiac/metabolism , Reperfusion Injury/metabolism , Tumor Suppressor Protein p53/genetics , Adaptor Proteins, Signal Transducing/genetics
14.
Nano Lett ; 22(23): 9596-9605, 2022 12 14.
Article En | MEDLINE | ID: mdl-36394551

Clinical serology assays for detecting the antibodies of the virus are time-consuming, are less sensitive/selective, or rely on sophisticated detection instruments. Here, we develop a sandwiched plasmonic biosensor (SPB) for supersensitive thickness-sensing via utilizing the distance-dependent electromagnetic coupling in sandwiched plasmonic nanostructures. SPBs quantitatively amplify the thickness changes on the nanoscale range (sensitivity: ∼2% nm-1) into macroscopically visible signals, thereby enabling the rapid, label-free, and naked-eye detection of targeted biomolecular species (via the thickness change caused by immunobinding events). As a proof of concept, this assay affords a broad dynamic range (7 orders of magnitude) and a low LOD (∼0.3 pM), allowing for the extremely accurate SARS-CoV-2 antibody quantification (sensitivity/specificity: 100%/∼99%, with a portable optical fiber device). This strategy is suitable for high-throughput multiplexed detection and smartphone-based sensing at the point-of-care, which can be expanded for various sensing applications beyond the fields of viral infections and vaccination.


Biosensing Techniques , COVID-19 , Humans , Surface Plasmon Resonance , Gold/chemistry , SARS-CoV-2 , COVID-19/diagnosis
15.
Plant Dis ; 2022 Nov 16.
Article En | MEDLINE | ID: mdl-36383992

Sugarcane (Saccharum officinarum) is an economically important crop and is extensively planted across China. In August 2020, leaf midribs with red lesions were observed on cultivar 'Yunzhe 081609' in Kaiyuan (103.27°E, 23.71°N), Yunnan, Southwestern China. In July to August 2021, similar symptoms were observed on cultivar 'Liucheng 05-136' in Hechi (108.48°E, 24.47°N), Guangxi, and on cultivars 'Yingyu 91-59' and 'Yunzhe 081609' in Lingcang (99.45°E, 23.33°N), Yunnan. Initially symptoms appeared as red spots on the leaf midribs, which gradually expanded, forming elongated red lesions. At high severity, the leaves broke and hung down. Disease incidence of leaves was estimated at 30 to 50% across the locations. To identify the etiology of this disease, three symptomatic leaves were collected from cultivars 'Liucheng 05-136', 'Yingyu 91-59', and 'Yunzhe 081609', respectively. Symptomatic leaf midribs were cut to small fragments (3 × 5 mm), surface sterilized with 70% ethanol for 30 s followed by 1% NaClO for 1 min, rinsed with sterilized distilled water three times, air dried on sterile filter paper, plated on potato dextrose agar (PDA), and incubated at 28°C in the dark. Ten isolates with similar morphological characteristics were obtained. Colonies on PDA were white to grayish-white with aerial mycelium growing initially upward and then forming clusters. After 10 days, mycelia turned to grayish black. Immature conidia were initially hyaline, aseptate, and ellipsoid. Mature conidia became dark brown, septate, longitudinal striate, and measured 21.2 to 25.8 × 11.4 to 16.4 µm (n = 30). Morphologically, the isolates were identified as Lasiodiplodia theobromae (Alves et al. 2008). For molecular identification, genomic DNA of four representative isolates (LTGX1, LTGX2, LTYN1 and LTYN2) was extracted using the Ezup Column Fungi Genomic DNA Purification kit. The internal transcribed spacer (ITS) region of rDNA, translation elongation factor 1-alpha (TEF-1α) gene, and ß-tubulin (TUB) gene were amplified with primer pairs ITS1/ITS4 for ITS, EF1-728F/EF1-986R for TEF-1α, and Bt2a/Bt2b for TUB, respectively (Glass and Donaldson 1995; Carbone and Kohn 1999; White et al. 1990), and then sequenced. The ITS (ON533336-ON533339), TEF-1α (ON939550-ON939553) and TUB (OP747306-OP747309) sequences were deposited in GenBank. BLAST searches showed >99% nucleotide identity to the sequences of ex-type isolate CBS 164.96 of L. theobromae (ITS, 99.8% to AY640255; TEF-1α, 99.9% to AY640258; TBU, 100% to EU673110). Phylogenetic analysis using maximum likelihood based on the combined ITS, TEF-1α, and TUB sequences of the isolates and reference sequences of Lasiodiplodia spp. downloaded from the GenBank indicated the isolates obtained in this study formed a clade strongly supported based on bootstrap values (100%) to the ex-type isolate CBS 164.96 sequences of L. theobromae. For pathogenicity tests, three healthy 6-month-old potted sugarcane leaf midribs of cultivar 'Yunzhe 081609' were wounded with a sterile needle, then inoculated using 8-mm mycelial agar plugs from a 10-day-old culture of strain LTYN1, and covered with wet cotton to maintain high relative humidity. Sterile PDA plugs were used as controls. Plants were placed in a greenhouse at 28 to 32°C. The test was conducted twice. Five days after inoculation, red lesions appeared on the inoculated leaf midribs. These symptoms were similar to those observed in the field. The leaves used for negative controls remained symptomless. The same fungus (L. theobromae) was re-isolated from all inoculated-symptomatic tissues; and isolates had the same morphological traits mentioned above. The DNA sequence data of these isolates was also similar than the original isolates. The association of L. theobromae with S. officinarum was recorded earlier in Cuba (Urtiaga, 1986), Myanmar (Thaung, 2008) and the Philippines (Reinking, 1919). Leaf midribs with red lesions caused by Colletotrichum falcatum has already been described around the world (Costa et al. 2021; Hossain et al. 2021; Xie et al. 2019). All together, this information indicates that L. theobromae is one of the causal agent of the red lesions symptoms on the sugarcane leaf midribs. To our knowledge, this is the first report of L. theobromae causing red lesions on leaf midribs of sugarcane in China. Further research will focus on developing management strategies to control this disease effectively.

16.
Int J Biol Sci ; 18(16): 6008-6019, 2022.
Article En | MEDLINE | ID: mdl-36439874

Cardiac fibrosis is one of the common pathological processes in many cardiovascular diseases characterized by excessive extracellular matrix deposition. SerpinE2 is a kind of protein that inhibits peptidase in extracellular matrix and up-regulated tremendously in mouse model of cardiac fibrosis induced by pressure-overloaded via transverse aortic constriction (TAC) surgery. However, its effect on cardiac fibroblasts (CFs), collagen secretion and the underlying mechanism remains unclear. In this study, DyLight® 488 green fluorescent dye or His-tagged proteins were used to label the exogenous serpinE2 protein. It was showed that extracellular serpinE2 translocated into CFs by low-density lipoprotein receptor-related protein 1 (LRP1) and urokinase plasminogen activator receptor (uPAR) of cell membrane through endocytosis. Knockdown of LRP1 or uPAR reduced the level of serpinE2 in CFs and down-regulated the collagen expression. Inhibition of the endocytosis of serpinE2 could inhibit ERK1/2 and ß-catenin signaling pathways and subsequently attenuated collagen secretion. Knockdown of serpinE2 attenuates cardiac fibrosis in TAC mouse. We conclude that serpinE2 could be translocated into cardiac fibroblasts due to endocytosis through directly interact with the membrane protein LRP1 and uPAR, and this process activated the ERK1/2, ß-catenin signaling pathways, consequently promoting collagen production.


beta Catenin , Mice , Animals , beta Catenin/metabolism , Serpin E2/metabolism , Serpin E2/pharmacology , Protease Inhibitors/pharmacology , MAP Kinase Signaling System/genetics , Fibrosis , Signal Transduction/genetics , Endocytosis/genetics , Collagen/metabolism
17.
Acta Pharm Sin B ; 12(9): 3602-3617, 2022 Sep.
Article En | MEDLINE | ID: mdl-36176913

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with unknown etiology and limited therapeutic options. Activation of fibroblasts is a prominent feature of pulmonary fibrosis. Here we report that lncRNA DACH1 (dachshund homolog 1) is downregulated in the lungs of IPF patients and in an experimental mouse model of lung fibrosis. LncDACH1 knockout mice develop spontaneous pulmonary fibrosis, whereas overexpression of LncDACH1 attenuated TGF-ß1-induced aberrant activation, collagen deposition and differentiation of mouse lung fibroblasts. Similarly, forced expression of LncDACH1 not only prevented bleomycin (BLM)-induced lung fibrosis, but also reversed established lung fibrosis in a BLM model. Mechanistically, LncDACH1 binding to the serine/arginine-rich splicing factor 1 (SRSF1) protein decreases its activity and inhibits the accumulation of Ctnnb1. Enhanced expression of SRSF1 blocked the anti-fibrotic effect of LncDACH1 in lung fibroblasts. Furthermore, loss of LncDACH1 promoted proliferation, differentiation, and extracellular matrix (ECM) deposition in mouse lung fibroblasts, whereas such effects were abolished by silencing of Ctnnb1. In addition, a conserved fragment of LncDACH1 alleviated hyperproliferation, ECM deposition and differentiation of MRC-5 cells driven by TGF-ß1. Collectively, LncDACH1 inhibits lung fibrosis by interacting with SRSF1 to suppress CTNNB1 accumulation, suggesting that LncDACH1 might be a potential therapeutic target for pulmonary fibrosis.

18.
Front Bioeng Biotechnol ; 10: 923365, 2022.
Article En | MEDLINE | ID: mdl-36017353

Urokinase is widely used in the dissolution of an acute pulmonary embolism due to its high biocatalytic effect. However, how to precisely regulate its dose, avoid the side effects of hemolysis or ineffective thrombolysis caused by too high or too low a dose, and seize the golden time of acute pulmonary embolism are the key factors for its clinical promotion. Therefore, based on the precise design of a molecular structure, an ultrasonic-responsive nanoliposome capsule was prepared in this paper. Singlet oxygen is continuously generated under the interaction of the ultrasonic cavitation effect and the sonosensitizer protoporphyrin, and the generated singlet oxygen will break the thiol acetone bond between the hydrophilic head and the hydrophobic tail of the liposome, and the lipid The body structure disintegrates rapidly, and the urokinase encapsulated inside is rapidly released, down-regulating the expression of fibrinogen in the body, and exerting a thrombolytic function. The in vitro and in vivo results show that the smart urokinase nanoliposomes prepared by us have sensitive and responsive cytocompatibility to ultrasound and good in vivo thrombolytic properties for acute pulmonary embolism, which provides a new strategy for clinical acute pulmonary embolism thrombolysis.

19.
Cell Death Discov ; 8(1): 312, 2022 Jul 09.
Article En | MEDLINE | ID: mdl-35810157

Non-small cell lung cancer (NSCLC) is highly malignant and heterogeneous form of lung cancer and involves various oncogene alterations. Glycolysis, an important step in tumor metabolism, is closely related to cancer progression. In this study, we investigated the biological function and mechanism of action of Gankyrin in glycolysis and its association with NSCLC. Analyzed of data from The Cancer Genome Atlas as well as NSCLC specimens and adjacent tissues demonstrated that Gankyrin expression was upregulated in NSCLC tissues compared to adjacent normal tissues. Gankyrin was found to significantly aggravate cancer-related phenotypes, including cell viability, migration, invasion, and epithelial mesenchymal transition (EMT), whereas Gankyrin silencing alleviated the malignant phenotype of NSCLC cells. Our results reveal that Gankyrin exerted its function by regulating YAP1 expression and increasing its nuclear translocation. Importantly, YAP1 actuates glycolysis, which involves glucose uptake, lactic acid production, and ATP generation and thus might contribute to the tumorigenic effect of Gankyrin. Furthermore, the Gankyrin-accelerated glycolysis in NSCLC cells was reversed by YAP1 deficiency. Gankyrin knockdown reduced A549 cell tumorigenesis and EMT and decreased YAP1 expression in a subcutaneous xenograft nude mouse model. In conclusion, both Gankyrin and YAP1 play important roles in tumor metabolism, and Gankyrin-targeted inhibition may be a potential anti-cancer therapeutic strategy for NSCLC.

20.
Commun Biol ; 5(1): 716, 2022 07 18.
Article En | MEDLINE | ID: mdl-35851102

Myocardial ischemia/reperfusion (MI/R) injury is a pathological process that seriously affects the health of patients with coronary artery disease. Long non-coding RNAs (lncRNAs) represents a new class of regulators of diverse biological processes and disease conditions, the study aims to discover the pivotal lncRNA in MI/R injury. The microarray screening identifies a down-regulated heart-enriched lncRNA-CIRPIL (Cardiac ischemia reperfusion associated p53 interacting lncRNA, lncCIRPIL) from the hearts of I/R mice. LncCIRPIL inhibits apoptosis of cultured cardiomyocytes exposed to anoxia/reoxygenation (A/R). Cardiac-specific transgenic overexpression of lncCIRPIL alleviates I/R injury in mice, while knockout of lncCIRPIL exacerbates cardiac I/R injury. LncCIRPIL locates in the cytoplasm and physically interacts with p53, which leads to the cytoplasmic sequestration and the acceleration of ubiquitin-mediated degradation of p53 triggered by E3 ligases CHIP, COP1 and MDM2. p53 overexpression abrogates the protective effects of lncCIRPIL. Notably, the human fragment of conserved lncCIRPIL mimics the protective effects of the full-length lncCIRPIL on cultured human AC16 cells. Collectively, lncCIRPIL exerts its cardioprotective action via sequestering p53 in the cytoplasm and facilitating its ubiquitin-mediated degradation. The study highlights a unique mechanism in p53 signal pathway and broadens our understanding of the molecular mechanisms of MI/R injury.


Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Cytoplasm , Humans , Mice , Myocardial Reperfusion Injury/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitins/metabolism
...