Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 15(677): eabo1815, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599002

ABSTRACT

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the DMD gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (µDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 1013 vector genomes per kilogram (vg/kg), 1 × 1014 vg/kg, and 2 × 1014 vg/kg; n = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-µDys5, and followed for 90 days after dosing. All dogs received prednisone (1 milligram/kilogram) for a total of 5 weeks from day -7 through day 28. We observed dose-dependent increases in tissue vector genome copy numbers; µDys5 protein in multiple appendicular muscles, the diaphragm, and heart; limb and respiratory muscle functional improvement; and reduction of histopathologic lesions. As expected, given that a truncated dystrophin protein was generated, phenotypic test results and histopathologic lesions did not fully normalize. All administrations were well tolerated, and adverse events were not seen. These data suggest that systemically administered AAV-microdystrophin may be dosed safely and could provide therapeutic benefit for patients with DMD.


Subject(s)
Muscular Dystrophy, Animal , Muscular Dystrophy, Duchenne , Animals , Dogs , Humans , Infant, Newborn , Mice , Dystrophin/genetics , Dystrophin/metabolism , Genetic Therapy , Heart , Muscle, Skeletal/metabolism , Muscles/metabolism , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy
2.
J Neuromuscul Dis ; 3(3): 381-393, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27854228

ABSTRACT

BACKGROUND: Phosphorodiamidate morpholino oligomers (PMOs) are a class of exon skipping drugs including eteplirsen, which has shown considerable promise for treatment of the degenerative neuromuscular disease, Duchenne musculardystrophy (DMD). OBJECTIVE: Toxicity studies in non-human primates (NHPs) of 12 weeks duration with two new PMOs for DMD, SRP-4045 and SRP-4053, along with results from a chronic study in NHPs of 39 weeks duration for eteplirsen, are described here. METHODS: PMOs were administered once-weekly by bolus intravenous (IV) injections to male NHPs. Endpoints evaluated included plasma exposures, clinical observations, body weight/food consumption, eye exams, electrocardiograms, male reproductive hormones/endpoints, complement alternative pathway, clinical pathology, urinalysis, and macroscopic/light microscopic pathology. RESULTS: Findings in these studies were limited to the kidneys, with a common presentation of tubular basophilia, vacuolation, and/or minimal degeneration that was considered non-adverse. No necrosis, glomerular lesions, or effects on renal function tests such as serum creatinine or urea nitrogen were observed, suggesting that PMO-related kidney findings are not likely to develop into frank nephrotoxicity. There were no adverse effects on other potential target organs after repeated IV injections at the highest dose levels tested, 320 mg/kg. CONCLUSIONS: Nonclinical results in NHPs for these three PMOs, together with the excellent clinical safety established for eteplirsen to date, suggest that once-weekly IV administration of PMOs for lifetime durations at therapeutic doses will be well tolerated by patients with DMD.


Subject(s)
Kidney/drug effects , Morpholinos/toxicity , Muscular Dystrophy, Duchenne/drug therapy , Animals , Basophils/drug effects , Basophils/pathology , Body Weight/drug effects , Electrocardiography , Exons , Heart/drug effects , Kidney Tubules/drug effects , Kidney Tubules/pathology , Macaca fascicularis , Male , Vacuoles/drug effects , Vacuoles/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...