Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Spine Surg ; 36(6): E239-E246, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36864585

ABSTRACT

STUDY DESIGN: Global cross-sectional survey. OBJECTIVE: The objective of this study was to validate the hierarchical nature of the AO Spine Sacral Classification System and develop an injury scoring system. SUMMARY OF BACKGROUND DATA: Although substantial interobserver and intraobserver reliability of the AO Spine Sacral Classification System has been established, the hierarchical nature of the classification has yet to be validated. METHODS: Respondents numerically graded each variable within the classification system for severity. Based on the results, a Sacral AO Spine Injury Score (AOSIS) was developed. RESULTS: A total of 142 responses were received. The classification exhibited a hierarchical Injury Severity Score (ISS) progression (A1: 8 to C3: 95) with few exceptions. Subtypes B1 and B2 fractures showed no significant difference in ISS (B1 43.9 vs. B2 43.4, P =0.362). In addition, the transitions A3→B1 and B3→C0 represent significant decreases in ISS (A3 66.3 vs. B1 43.9, P <0.001; B3 64.2 vs. C0 46.4, P <0.001). Accordingly, A1 injury was assigned a score of 0. A2 and A3 received scores of 1 and 3 points, respectively. Posterior pelvic injuries B1 and B2 both received a score of 2. B3 received a score of 3 points. C0, C1, C2, and C3 received scores of 2, 3, 5, and 6 points, respectively. The scores assigned to neurological modifiers N0, N1, N2, N3, and NX were 0, 1, 2, 4, and 3, respectively. Case-specific modifiers M1, M2, M3, and M4 received scores of 0, 0, 1, and 2 points, respectively. CONCLUSIONS: The results of this study validate the hierarchical nature of the AO Spine Sacral Classification System. The Sacral AOSIS sets the foundation for further studies to develop a universally accepted treatment algorithm for the treatment of complex sacral injuries. LEVEL OF EVIDENCE: Level IV-Diagnostic.


Subject(s)
Fractures, Bone , Sacrum , Humans , Reproducibility of Results , Cross-Sectional Studies , Sacrum/diagnostic imaging , Injury Severity Score
2.
Spine (Phila Pa 1976) ; 47(22): 1541-1548, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35877555

ABSTRACT

STUDY DESIGN: Global cross-sectional survey. OBJECTIVE: To determine the classification accuracy, interobserver reliability, and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on an international group of AO Spine members. SUMMARY OF BACKGROUND DATA: Previous upper cervical spine injury classifications have primarily been descriptive without incorporating a hierarchical injury progression within the classification system. Further, upper cervical spine injury classifications have focused on distinct anatomical segments within the upper cervical spine. The AO Spine Upper Cervical Injury Classification System incorporates all injuries of the upper cervical spine into a single classification system focused on a hierarchical progression from isolated bony injuries (type A) to fracture dislocations (type C). METHODS: A total of 275 AO Spine members participated in a validation aimed at classifying 25 upper cervical spine injuries through computed tomography scans according to the AO Spine Upper Cervical Classification System. The validation occurred on two separate occasions, three weeks apart. Descriptive statistics for percent agreement with the gold-standard were calculated and the Pearson χ 2 test evaluated significance between validation groups. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS: The accuracy of AO Spine members to appropriately classify upper cervical spine injuries was 79.7% on assessment 1 (AS1) and 78.7% on assessment 2 (AS2). The overall intraobserver reproducibility was substantial (κ=0.70), while the overall interobserver reliability for AS1 and AS2 was substantial (κ=0.63 and κ=0.61, respectively). Injury location had higher interobserver reliability (AS1: κ = 0.85 and AS2: κ=0.83) than the injury type (AS1: κ=0.59 and AS2: 0.57) on both assessments. CONCLUSION: The global validation of the AO Spine Upper Cervical Injury Classification System demonstrated substantial interobserver agreement and intraobserver reproducibility. These results support the universal applicability of the AO Spine Upper Cervical Injury Classification System. LEVEL OF EVIDENCE: 4.


Subject(s)
Spinal Diseases , Spinal Injuries , Humans , Reproducibility of Results , Observer Variation , Cross-Sectional Studies , Spinal Injuries/diagnostic imaging , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/injuries
SELECTION OF CITATIONS
SEARCH DETAIL