Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Acta Pharm Sin B ; 13(12): 4945-4962, 2023 Dec.
Article En | MEDLINE | ID: mdl-38045053

The bacterial ATP-competitive GyrB/ParE subunits of type II topoisomerase are important anti-bacterial targets to treat super drug-resistant bacterial infections. Herein we discovered novel pyrrolamide-type GyrB/ParE inhibitors based on the structural modifications of the candidate AZD5099 that was withdrawn from the clinical trials due to safety liabilities such as mitochondrial toxicity. The hydroxyisopropyl pyridazine compound 28 had a significant inhibitory effect on Gyrase (GyrB, IC50 = 49 nmol/L) and a modest inhibitory effect on Topo IV (ParE, IC50 = 1.513 µmol/L) of Staphylococcus aureus. It also had significant antibacterial activities on susceptible and resistant Gram-positive bacteria with a minimum inhibitory concentration (MIC) of less than 0.03 µg/mL, which showed a time-dependent bactericidal effect and low frequencies of spontaneous resistance against S. aureus. Compound 28 had better protective effects than the positive control drugs such as DS-2969 (5) and AZD5099 (6) in mouse models of sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA) infection. It also showed better bactericidal activities than clinically used vancomycin in the mouse thigh MRSA infection models. Moreover, compound 28 has much lower mitochondrial toxicity than AZD5099 (6) as well as excellent therapeutic indexes and pharmacokinetic properties. At present, compound 28 has been evaluated as a pre-clinical drug candidate for the treatment of drug-resistant Gram-positive bacterial infection. On the other hand, compound 28 also has good inhibitory activities against stubborn Gram-negative bacteria such as Escherichia coli (MIC = 1 µg/mL), which is comparable with the most potent pyrrolamide-type GyrB/ParE inhibitors reported recently. In addition, the structure-activity relationships of the compounds were also studied.

2.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4877-4885, 2022 Sep.
Article Zh | MEDLINE | ID: mdl-36164897

Appropriate light intensity is favorable for the photosynthesis, biomass accumulation, key enzyme activity, and secondary metabolite synthesis of medicinal plants. This study aims to explore the influence of light intensity on growth and quality of Panax quinquefolius. To be specific, sand culture experiment was carried out in a greenhouse under the light intensity of 40, 80, 120, and 160 µmol·m~(-2)·s~(-1), respectively. The growth indexes, photosynthetic characteristics, content of 6 ginsenosides of the 3-year-old P. quinquefolius were determined, and the expression of ginsenoside synthesis-related enzyme genes in leaves, main roots, and fibrous roots was determined. The results showed that the P. quinquefolius growing at 80 µmol·m~(-2)·s~(-1) light intensity had the most biomass and the highest net photosynthetic rate. The total biomass of P. quinquefolius treated with 120 µmol·m~(-2)·s~(-1) light intensity was slightly lower than that with 80 µmol·m~(-2)·s~(-1). The root-to-shoot ratio in the treatment with 120 µmol·m~(-2)·s~(-1) light intensity was up to 6.86, higher than those in other treatments(P<0.05),and the ginsenoside content in both aboveground and underground parts of P. quinquefolius in this treatment was the highest, which was possibly associated with the high expression of farnesylpyrophosphate synthase(FPS), squalene synthase(SQS), squalene epoxidase(SQE), oxidosqualene cyclase(OSC), dammarenediol-Ⅱ synthase(DS), and P450 genes in leaves and SQE and DS genes in main roots. In addition, light intensities of 120 and 160 µmol·m~(-2)·s~(-1) could promote PPD-type ginsenoside synthesis in leaves by triggering up-regulation of the expression of upstream ginsenoside synthesis genes. The decrease in underground biomass accumulation of the P. quinquefolius grown under weak light(40 µmol·m~(-2)·s~(-1)) and strong light(160 µmol·m~(-2)·s~(-1)) was possibly attributed to the low net photosynthetic rate, stomatal conductance, and transpiration rate in leaves. In the meantime, the low expression of SQS, SQE, OSC, and DS genes in the main roots might led to the decrease in ginsenoside content. However, there was no significant correlation between the ginsenoside content and the expression of synthesis-related genes in the fibrous roots of P. quinquefolius. Therefore, the light intensity of 80 and 120 µmol·m~(-2)·s~(-1) is beneficial to improving yield and quality of P. quinquefolius. The above findings contributed to a theoretical basis for reasonable shading in P. quinquefolius cultivation, which is of great significance for improving the yield and quality of P. quinquefolius through light regulation.


Ginsenosides , Panax , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Panax/metabolism , Plant Roots/metabolism , Sand , Squalene Monooxygenase
3.
Zhongguo Zhong Yao Za Zhi ; 45(8): 1866-1872, 2020 Apr.
Article Zh | MEDLINE | ID: mdl-32489071

Mineral nutrient elements are the key factors to maintain the growth and quality of American ginseng. In order to understand the comprehensive effect of different nutrient elements deficiency on American ginseng, 2-year-old American ginsengs were cultivated by Hoagland solution(CK) or 10 different nutrients deficiency solution in sand culture. During the cultivation, the deficient symptom was observed. The plant height, leaf area, biomass, photosynthetic index, root activity, ginsenoside content were measured. The results showed that N, K or Fe deficiency could lead to leaves of American ginseng yellowing. Deficiency N, K, Ca, Mg and B were the main factors that decrease plant height and leaf area. The biomass of plant decreased significantly in all the nutrient deficient treatments(P<0.05)compared with control group, and N, K, Ca or Fe deficiency groups descended over 50%. In the absence of N, K and Fe elements, the P_n, G_s, C_i, T_r and chlorophyll of leaves were decreased mostly. The first three factors decreasing root activity were N, K and Ca deficiency. The effects of nutrient deficiency on saponins of American ginseng were different.Generally, N, P, B, Zn and Cu deficiency resulted the synthesis of saponins decreased significantly(P<0.05). This study contributed to clarify the demand characteristics of American ginseng for different nutrient elements,which is of great significance for the diagnose of nutrient deficiency, the rational fertilizer and the improvement of yield and quality of American ginseng.


Ginsenosides , Panax , Saponins , Nutrients , Photosynthesis
4.
Colloids Surf B Biointerfaces ; 102: 37-44, 2013 Feb 01.
Article En | MEDLINE | ID: mdl-23000675

A magnetic nano-sized carrier for 10-hydroxycamptothecin (HCPT) was prepared by using Fe(3)O(4) nanoparticles as cores and chitosan (CS) as a polymeric shell by a novel reverse ultrasonic emulsification method. Poly(ethylene glycol) (PEG) chains were then coupled onto the magnetic particles (CS-Fe(3)O(4)) to improve their biocompatibility (PEG-CS-Fe(3)O(4)). HCPT was loaded onto PEG-CS-Fe(3)O(4) by a subtle precipitation method. Under optimum conditions, the CS-Fe(3)O(4) was close to spherical in shape with an average size of 174 nm and a high saturated magnetization. After coupling PEG chains, the unspecific adsorption of bovine serum albumin (BSA) on PEG-CS-Fe(3)O(4) decreased significantly. The drug loading content and loading efficiency were 9.8-11.8% and 49-59% for magnetic composite nanoparticles, respectively. HCPT-loaded magnetic composite nanoparticles showed sustained release profiles up to 48 h, and the cumulative release amount of HCPT from nanoparticles at 45°C increased significantly compared to that at 37°C. Cytotoxicity assay suggests that CS-Fe(3)O(4) does not exhibit noteworthy cytotoxicity against HepG2 cells, but the antitumor activities of HCPT-loaded magnetic composite nanoparticles against HepG2 cells increased significantly in comparison with that of pristine HCPT powder. These results reveal the promising potential of PEG-CS-Fe(3)O(4) as a stable magnetic targeting drug carrier in cancer therapy.


Camptothecin/analogs & derivatives , Chitosan/chemistry , Drug Carriers/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Camptothecin/chemistry , Cell Survival/drug effects , Drug Carriers/adverse effects , Hep G2 Cells , Humans , Nanoparticles/adverse effects
...