Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Curr Opin Biotechnol ; 87: 103129, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703526

Fat-soluble antioxidants play a vital role in protecting the body against oxidative stress and damage. The rapid advancements in metabolic engineering and synthetic biology have offered a promising avenue for economically producing fat-soluble antioxidants by engineering microbial chassis. This review provides an overview of the recent progress in engineering yeast microbial factories to produce three main groups of lipophilic antioxidants: carotenoids, vitamin E, and stilbenoids. In addition to discussing the classic strategies employed to improve precursor availability and alleviate carbon flux competition, this review delves deeper into the innovative approaches focusing on enzyme engineering, product sequestration, subcellular compartmentalization, multistage fermentation, and morphology engineering. We conclude the review by highlighting the prospects of microbial engineering for lipophilic antioxidant production.


Antioxidants , Metabolic Engineering , Antioxidants/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Carotenoids/metabolism , Carotenoids/chemistry , Synthetic Biology/methods , Vitamin E/metabolism , Vitamin E/biosynthesis , Stilbenes/metabolism
2.
Nat Commun ; 14(1): 7797, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38016984

Plant-sourced aromatic amino acid (AAA) derivatives are a vast group of compounds with broad applications. Here, we present the development of a yeast consortium for efficient production of (S)-norcoclaurine, the key precursor for benzylisoquinoline alkaloid biosynthesis. A xylose transporter enables the concurrent mixed-sugar utilization in Scheffersomyces stipitis, which plays a crucial role in enhancing the flux entering the highly regulated shikimate pathway located upstream of AAA biosynthesis. Two quinate permeases isolated from Aspergillus niger facilitates shikimate translocation to the co-cultured Saccharomyces cerevisiae that converts shikimate to (S)-norcoclaurine, resulting in the maximal titer (11.5 mg/L), nearly 110-fold higher than the titer reported for an S. cerevisiae monoculture. Our findings magnify the potential of microbial consortium platforms for the economical de novo synthesis of complex compounds, where pathway modularization and compartmentalization in distinct specialty strains enable effective fine-tuning of long biosynthetic pathways and diminish intermediate buildup, thereby leading to increases in production.


Benzylisoquinolines , Xylose , Xylose/metabolism , Benzylisoquinolines/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Microbial Consortia , Metabolic Engineering/methods , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
3.
Metab Eng Commun ; 16: e00220, 2023 Jun.
Article En | MEDLINE | ID: mdl-36860699

Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, Issatchenkia orientalis, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of I. orientalis for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (cimA) variant for expression in I. orientalis. We then adapted a piggyBac transposon system for I. orientalis that allowed us to simultaneously explore the effects of different cimA gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-cimA strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of I. orientalis as a chassis for citramalate production.

4.
Curr Opin Biotechnol ; 79: 102869, 2023 02.
Article En | MEDLINE | ID: mdl-36584447

The prospect of leveraging naturally occurring phenotypes to overcome bottlenecks constraining the bioeconomy has marshalled increased exploration of nonconventional organisms. This review discusses the status of non-model eukaryotic species in bioproduction, the evaluation criteria for effectively matching a candidate host to a biosynthetic process, and the genetic engineering tools needed for host domestication. We present breakthroughs in genome editing and heterologous pathway design, delving into innovative spatiotemporal modulation strategies that potentiate more refined engineering capabilities. We cover current understanding of genetic instability and its ramifications for industrial scale-up, highlighting key factors and possible remedies. Finally, we propose future opportunities to expand the current collection of available hosts and provide guidance to benefit the broader bioeconomy.


Eukaryota , Genetic Engineering , Eukaryota/genetics , Gene Editing/methods , Metabolic Engineering/methods
5.
Nat Chem Biol ; 18(1): 38-46, 2022 01.
Article En | MEDLINE | ID: mdl-34711982

Inefficient homology-directed repair (HDR) constrains CRISPR-Cas9 genome editing in organisms that preferentially employ nonhomologous end joining (NHEJ) to fix DNA double-strand breaks (DSBs). Current strategies used to alleviate NHEJ proficiency involve NHEJ disruption. To confer precision editing without NHEJ disruption, we identified the shortcomings of the conventional CRISPR platforms and developed a CRISPR platform-lowered indel nuclease system enabling accurate repair (LINEAR)-which enhanced HDR rates (to 67-100%) compared to those in previous reports using conventional platforms in four NHEJ-proficient yeasts. With NHEJ preserved, we demonstrate its ability to survey genomic landscapes, identifying loci whose spatiotemporal genomic architectures yield favorable expression dynamics for heterologous pathways. We present a case study that deploys LINEAR precision editing and NHEJ-mediated random integration to rapidly engineer and optimize a microbial factory to produce (S)-norcoclaurine. Taken together, this work demonstrates how to leverage an antagonizing pair of DNA DSB repair pathways to expand the current collection of microbial factories.


CRISPR-Cas Systems , Genetic Engineering , Saccharomyces cerevisiae/genetics , DNA End-Joining Repair , Fermentation , Genes, Fungal
6.
Metab Eng ; 67: 428-442, 2021 09.
Article En | MEDLINE | ID: mdl-34391890

Microbial synthesis of wax esters (WE) from low-cost renewable and sustainable feedstocks is a promising path to achieve cost-effectiveness in biomanufacturing. WE are industrially high-value molecules, which are widely used for applications in chemical, pharmaceutical, and food industries. Since the natural WE resources are limited, the WE production mostly rely on chemical synthesis from rather expensive starting materials, and therefore solution are sought from development of efficient microbial cell factories. Here we report to engineer the yeast Yarrowia lipolytica and bacterium Escherichia coli to produce WE at the highest level up to date. First, the key genes encoding fatty acyl-CoA reductases and wax ester synthase from different sources were investigated, and the expression system for two different Y. lipolytica hosts were compared and optimized for enhanced WE production and the strain stability. To improve the metabolic pathway efficiency, different carbon sources including glucose, free fatty acid, soybean oil, and waste cooking oil (WCO) were compared, and the corresponding pathway engineering strategies were optimized. It was found that using a lipid substrate such as WCO to replace glucose led to a 60-fold increase in WE production. The engineered yeast was able to produce 7.6 g/L WE with a yield of 0.31 (g/g) from WCO within 120 h and the produced WE contributed to 57% of the yeast DCW. After that, E. coli BL21(DE3), with a faster growth rate than the yeast, was engineered to significantly improve the WE production rate. Optimization of the expression system and the substrate feeding strategies led to production of 3.7-4.0 g/L WE within 40 h in a 1-L bioreactor. The predominant intracellular WE produced by both Y. lipolytica and E. coli in the presence of hydrophobic substrates as sole carbon sources were C36, C34 and C32, in an order of decreasing abundance and with a large proportion being unsaturated. This work paved the way for the biomanufacturing of WE at a large scale.


Esters , Yarrowia , Biofuels , Escherichia coli/genetics , Fatty Acids , Metabolic Engineering , Yarrowia/genetics
7.
Appl Microbiol Biotechnol ; 105(14-15): 5959-5972, 2021 Aug.
Article En | MEDLINE | ID: mdl-34357429

Production of industrially relevant compounds in microbial cell factories can employ either genomes or plasmids as an expression platform. Selection of plasmids as pathway carriers is advantageous for rapid demonstration but poses a challenge of stability. Yarrowia lipolytica has attracted great attention in the past decade for the biosynthesis of chemicals related to fatty acids at titers attractive to industry, and many genetic tools have been developed to explore its oleaginous potential. Our recent studies on the autonomously replicating sequences (ARSs) of nonconventional yeasts revealed that the ARSs from Y. lipolytica showcase a unique structure that includes a previously unannotated sequence (spacer) linking the origin of replication (ORI) and the centromeric (CEN) element and plays a critical role in modulating plasmid behavior. Maintaining a native 645-bp spacer yielded a 2.2-fold increase in gene expression and 1.7-fold higher plasmid stability compared to a more universally employed minimized ARS. Testing the modularity of the ARS sub-elements indicated that plasmid stability exhibits a pronounced cargo dependency. Instability caused both plasmid loss and intramolecular rearrangements. Altogether, our work clarifies the appropriate application of various ARSs for the scientific community and sheds light on a previously unexplored DNA element as a potential target for engineering Y. lipolytica.


Replication Origin , Yarrowia , Centromere , DNA Replication , Metabolic Engineering , Plasmids/genetics , Yarrowia/genetics
8.
Nat Commun ; 12(1): 4368, 2021 07 16.
Article En | MEDLINE | ID: mdl-34272383

Bioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency. By leveraging pathways in solventogenic clostridia for co-producing acyl-CoAs, acids and alcohols as precursors, through rational screening for host strains and enzymes, systematic metabolic engineering-including elimination of putative prophages, we develop strains that can produce 20.3 g/L butyl acetate and 1.6 g/L butyl butyrate. Techno-economic analysis results suggest the economic competitiveness of our developed bioprocess. Our principles of selecting the most appropriate host for specific bioproduction and engineering microbial chassis to produce high-value and easy-separable end products may be applicable to other bioprocesses.


Acetates/metabolism , Butyrates/chemistry , Clostridium/metabolism , Fatty Acids/metabolism , Fermentation/genetics , Metabolic Engineering/methods , Acetyl Coenzyme A/metabolism , Biofuels/microbiology , Biomass , Clostridium/enzymology , Clostridium/genetics , Esters/metabolism , Metabolic Networks and Pathways/genetics , NAD/metabolism , Proteins/genetics , Proteins/metabolism , Recombinant Proteins
10.
Metab Eng ; 61: 120-130, 2020 09.
Article En | MEDLINE | ID: mdl-32474056

Adaptive laboratory evolution is often used to improve the performance of microbial cell factories. Reverse engineering of evolved strains enables learning and subsequent incorporation of novel design strategies via the design-build-test-learn cycle. Here, we reverse engineer a strain of Escherichia coli previously evolved for increased tolerance of octanoic acid (C8), an attractive biorenewable chemical, resulting in increased C8 production, increased butanol tolerance, and altered membrane properties. Here, evolution was determined to have occurred first through the restoration of WaaG activity, involved in the production of lipopolysaccharides, then an amino acid change in RpoC, a subunit of RNA polymerase, and finally mutation of the BasS-BasR two component system. All three mutations were required in order to reproduce the increased growth rate in the presence of 20 mM C8 and increased cell surface hydrophobicity; the WaaG and RpoC mutations both contributed to increased C8 titers, with the RpoC mutation appearing to be the major driver of this effect. Each of these mutations contributed to changes in the cell membrane. Increased membrane integrity and rigidity and decreased abundance of extracellular polymeric substances can be attributed to the restoration of WaaG. The increase in average lipid tail length can be attributed to the RpoCH419P mutation, which also confers tolerance to other industrially-relevant inhibitors, such as furfural, vanillin and n-butanol. The RpoCH419P mutation may impact binding or function of the stringent response alarmone ppGpp to RpoC site 1. Each of these mutations provides novel strategies for engineering microbial robustness, particularly at the level of the microbial cell membrane.


Caprylates/metabolism , DNA-Directed RNA Polymerases , Escherichia coli Proteins , Escherichia coli , Glucosyltransferases , Metabolic Engineering , Mutation, Missense , Amino Acid Substitution , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism
11.
ACS Synth Biol ; 9(7): 1736-1752, 2020 07 17.
Article En | MEDLINE | ID: mdl-32396718

We broadened the usage of DNA transposon technology by demonstrating its capacity for the rapid creation of expression libraries for long biochemical pathways, which is beyond the classical application of building genome-scale knockout libraries in yeasts. This strategy efficiently leverages the readily available fine-tuning impact provided by the diverse transcriptional environment surrounding each random integration locus. We benchmark the transposon-mediated integration against the nonhomologous end joining-mediated strategy. The latter strategy was demonstrated for achieving pathway random integration in other yeasts but is associated with a high false-positive rate in the absence of a high-throughput screening method. Our key innovation of a nonreplicable circular DNA platform increased the possibility of identifying top-producing variants to 97%. Compared to the classical DNA transposition protocol, the design of a nonreplicable circular DNA skipped the step of counter-selection for plasmid removal and thus not only reduced the time required for the step of library creation from 10 to 5 d but also efficiently removed the "transposition escapers", which undesirably represented almost 80% of the entire population as false positives. Using one endogenous product (i.e., shikimate) and one heterologous product (i.e., (S)-norcoclaurine) as examples, we presented a streamlined procedure to rapidly identify high-producing variants with titers significantly higher than the reported data in the literature. We selected Scheffersomyces stipitis, a representative nonconventional yeast, as a demo, but the strategy can be generalized to other nonconventional yeasts. This new exploration of transposon technology, therefore, adds a highly versatile tool to accelerate the development of novel species as microbial cell factories for producing value-added chemicals.


Bioreactors , DNA Transposable Elements/genetics , Metabolic Engineering/methods , Saccharomycetales/genetics , Saccharomycetales/metabolism , Alkaloids/metabolism , DNA End-Joining Repair , DNA, Circular/genetics , DNA, Circular/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genome, Fungal , Genomic Library , High-Throughput Screening Assays , Mutagenesis, Insertional , Plasmids/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Shikimic Acid/metabolism , Tetrahydroisoquinolines/metabolism
12.
Metab Eng Commun ; 10: e00124, 2020 Jun.
Article En | MEDLINE | ID: mdl-32346511

Itaconic acid (IA), or 2-methylenesuccinic acid, has a broad spectrum of applications in the biopolymer industry owing to the presence of one vinyl bond and two acid groups in the structure. Its polymerization can follow a similar mechanism as acrylic acid but additional functionality can be incorporated into the extra beta acid group. Currently, the bio-based production of IA in industry relies on the fermentation of the filamentous fungus Aspergillus terreus. However, the difficulties associated with the fermentation undertaken by filamentous fungi together with the pathogenic potential of A. terreus pose a serious challenge for industrial-scale production. In recent years, there has been increasing interest in developing alternative production hosts for fermentation processes that are more homogenous in the production of organic acids. Pichia kudriavzevii is a non-conventional yeast with high acid tolerance to organic acids at low pH, which is a highly desirable trait by easing downstream processing. We introduced cis-aconitic acid decarboxylase gene (cad) from A. terreus (designated At_cad) into this yeast and established the initial titer of IA at 135 â€‹± â€‹5 â€‹mg/L. Subsequent overexpression of a native mitochondrial tricarboxylate transporter (herein designated Pk_mttA) presumably delivered cis-aconitate efficiently to the cytosol and doubled the IA production. By introducing the newly invented CRISPR-Cas9 system into P. kudriavzevii, we successfully knocked out both copies of the gene encoding isocitrate dehydrogenase (ICD), aiming to increase the availability of cis-aconitate. The resulting P. kudriavzevii strain, devoid of ICD and overexpressing Pk_mttA and At_cad on its genome produced IA at 505 â€‹± â€‹17.7 â€‹mg/L in shake flasks, and 1232 â€‹± â€‹64 â€‹mg/L in fed-batch fermentation. Because the usage of an acid-tolerant species does not require pH adjustment during fermentation, this work demonstrates the great potential of engineering P. kudriavzevii as an industrial chassis for the production of organic acid.

13.
ACS Synth Biol ; 9(4): 706-717, 2020 04 17.
Article En | MEDLINE | ID: mdl-32207925

Combinatorial engineering is a preferred strategy for attaining optimal pathway performance. Previous endeavors have been concentrated on regulatory elements (e.g., promoters, terminators, and ribosomal binding sites) and/or open reading frames. Accumulating evidence indicates that noncoding DNA sequences flanking a transcriptional unit on the genome strongly impact gene expression. Here, we sought to mimic the effect imposed on expression cassettes by the genome. We created variants of the model yeast Saccharomyces cerevisiae with significantly improved fluorescence or cellobiose consumption rate by randomizing the sequences adjacent to the GFP expression cassette or the cellobiose-utilization pathway, respectively. Interestingly, nucleotide specificity was observed at certain positions and showed to be essential for achieving optimal cellobiose assimilation. Further characterization suggested that the modulation effects of the short sequences flanking the expression cassettes could be potentially mediated by remodeling DNA packaging and/or recruiting transcription factors. Collectively, these results indicate that the often-overlooked contiguous DNA sequences can be exploited to rapidly achieve balanced pathway expression, and the corresponding approach could be easily stacked with other combinatorial engineering strategies.


Metabolic Engineering/methods , Systems Biology/methods , Cellobiose/genetics , Cellobiose/metabolism , Gene Expression Regulation, Fungal/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/genetics
14.
Metab Eng ; 59: 87-97, 2020 05.
Article En | MEDLINE | ID: mdl-32007615

The nonconventional yeast Issatchenkia orientalis can grow under highly acidic conditions and has been explored for production of various organic acids. However, its broader application is hampered by the lack of efficient genetic tools to enable sophisticated metabolic manipulations. We recently constructed an episomal plasmid based on the autonomously replicating sequence (ARS) from Saccharomyces cerevisiae (ScARS) in I. orientalis and developed a CRISPR/Cas9 system for multiplexed gene deletions. Here we report three additional genetic tools including: (1) identification of a 0.8 kb centromere-like (CEN-L) sequence from the I. orientalis genome by using bioinformatics and functional screening; (2) discovery and characterization of a set of constitutive promoters and terminators under different culture conditions by using RNA-Seq analysis and a fluorescent reporter; and (3) development of a rapid and efficient in vivo DNA assembly method in I. orientalis, which exhibited ~100% fidelity when assembling a 7 kb-plasmid from seven DNA fragments ranging from 0.7 kb to 1.7 kb. As proof of concept, we used these genetic tools to rapidly construct a functional xylose utilization pathway in I. orientalis.


CRISPR-Cas Systems , DNA, Fungal , Metabolic Engineering , Pichia , DNA, Fungal/genetics , DNA, Fungal/metabolism , Pichia/genetics , Pichia/metabolism , Saccharomyces cerevisiae/genetics
15.
Metab Eng ; 58: 94-132, 2020 03.
Article En | MEDLINE | ID: mdl-31408706

The aromatic amino acid biosynthesis pathway, together with its downstream branches, represents one of the most commercially valuable biosynthetic pathways, producing a diverse range of complex molecules with many useful bioactive properties. Aromatic compounds are crucial components for major commercial segments, from polymers to foods, nutraceuticals, and pharmaceuticals, and the demand for such products has been projected to continue to increase at national and global levels. Compared to direct plant extraction and chemical synthesis, microbial production holds promise not only for much shorter cultivation periods and robustly higher yields, but also for enabling further derivatization to improve compound efficacy by tailoring new enzymatic steps. This review summarizes the biosynthetic pathways for a large repertoire of commercially valuable products that are derived from the aromatic amino acid biosynthesis pathway, and it highlights both generic strategies and specific solutions to overcome certain unique problems to enhance the productivities of microbial hosts.


Amino Acids, Aromatic , Industrial Microbiology , Metabolic Engineering , Microorganisms, Genetically-Modified , Plants/chemistry , Amino Acids, Aromatic/biosynthesis , Amino Acids, Aromatic/genetics , Biosynthetic Pathways , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism
16.
Biotechnol J ; 13(9): e1700598, 2018 Sep.
Article En | MEDLINE | ID: mdl-29917323

Scheffersomyces stipitis, renowned for its native xylose-utilizing capacity, has recently demonstrated its potential in producing health-promoting shikimate pathway derivatives. However, its broader application is hampered by the low transformation efficiency and the lack of genetic engineering tools to enable sophisticated genomic manipulations. S. stipitis employs the predominant non-homologous end joining (NHEJ) mechanism for repairing DNA double-strand breaks (DSB), which is less desired due to its incompetence in achieving precise genome editing. Using CRISPR technology, here a ku70Δku80Δ deficient strain in which homologous recombination (HR)-based genome editing appeared dominant for the first time in S. stipitis is constructed. To build all essential tools for efficiently manipulating this highly promising nonconventional microbial host, the gene knockdown tool is also established, and repression efficiency is improved by incorporating a transcriptional repressor Mxi1 into the CRISPR-dCas9 platform. All these results are obtained with the improved transformation efficiency, which is 191-fold higher than that obtained with the traditional parameters used in yeast transformation. This work paves the way for advancing a new microbial chassis and provides a guideline for developing efficient CRISPR tools in other nonconventional yeasts.


Fungal Proteins/genetics , Gene Editing/methods , Saccharomycetales/genetics , CRISPR-Cas Systems , DNA End-Joining Repair , Gene Expression Regulation, Bacterial , Gene Knockout Techniques
17.
Biotechnol Bioeng ; 115(3): 673-683, 2018 03.
Article En | MEDLINE | ID: mdl-29105731

The monoterpene indole alkaloids vindoline and catharanthine, which are exclusively synthesized in the medicinal plant Catharanthus roseus, are the two important precursors for the production of pharmaceutically important anti-cancer medicines vinblastine and vincristine. Hairy root culture is an ideal platform for alkaloids production due to its industrial scalability, genetic and chemical stability, and availability of genetic engineering tools. However, C. roseus hairy roots do not produce vindoline due to the lack of expression of the seven-step pathway from tabersonine to vindoline [Murata & De Luca (2015) Plant Journal, 44, 581-594]. The present study describes the genetic engineering of the first two genes tabersonine 16-hydroxylase (T16H) and 16-O-methyl transferase (16OMT) in the missing vindoline pathway under the control of a glucocorticoid-inducible promoter to direct tabersonine toward vindoline biosynthesis in C. roseus hairy roots. In two transgenic hairy roots, the induced overexpression of T16H and 16OMT resulted in the accumulation of vindoline pathway metabolites 16-hydroxytabersonine and 16-methoxytabersonine. The levels of root-specific alkaloids, including lochnericine, 19-hydroxytabersonine and hörhammericine, significantly decreased in the induced hairy roots in comparison to the uninduced control lines. This suggests tabersonine was successfully channeled to the vindoline pathway away from the roots competing pathway based on the overexpression. Interestingly, another two new metabolites were detected in the induced hairy roots and proposed to be the epoxidized-16-hydroxytabersonine and lochnerinine. Thus, the introduction of vindoline pathway genes in hairy roots can cause unexpected terpenoid indole alkaloids (TIA) profile alterations. Furthermore, we observed complex transcriptional changes in TIA genes and regulators detected by RT-qPCR which highlight the tight regulation of the TIA pathway in response to T16H and 16OMT engineering in C. roseus hairy roots.


Catharanthus/enzymology , Cytochrome P-450 Enzyme System/biosynthesis , Gene Expression , Indole Alkaloids/metabolism , Plant Proteins/biosynthesis , Plant Roots/enzymology , Plants, Genetically Modified/enzymology , Quinolines/metabolism , Catharanthus/genetics , Cytochrome P-450 Enzyme System/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics
18.
Front Microbiol ; 9: 3264, 2018.
Article En | MEDLINE | ID: mdl-30723464

Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.

19.
ACS Synth Biol ; 6(11): 2028-2034, 2017 11 17.
Article En | MEDLINE | ID: mdl-28837318

Centromeres (CENs) are the chromosomal regions promoting kinetochore formation for faithful chromosome segregation. In yeasts, CENs have been recognized as the essential elements for extra-chromosomal DNA stabilization. However, the epigeneticity of CENs makes their localization on individual chromosomes very challenging, especially in many not well-studied nonconventional yeast species. Previously, we applied a stepwise method to identify a 500-bp CEN5 from Scheffersomyces stipitis chromosome 5 and experimentally confirmed its critical role on improving plasmid stability. Here we report a library-based strategy that integrates in silico GC3 chromosome scanning and high-throughput functional screening, which enabled the isolation of all eight S. stipitis centromeres with a 16 000-fold reduction in sequence very efficiently. Further identification of a 125-bp CEN core sequence that appears multiple times on each chromosome but all in the unique signature GC3-valley indicates that CEN location might be accurately discerned by their local GC3 percentages in a subgroup of yeasts.


Centromere/chemistry , Chromosomes, Fungal/chemistry , Saccharomycetales/chemistry
20.
Metab Eng ; 42: 134-144, 2017 07.
Article En | MEDLINE | ID: mdl-28625755

A multilevel approach was implemented in Saccharomyces cerevisiae to optimize the precursor module of the aromatic amino acid biosynthesis pathway, which is a rich resource for synthesizing a great variety of chemicals ranging from polymer precursor, to nutraceuticals and pain-relief drugs. To facilitate the discovery of novel targets to enhance the pathway flux, we incorporated the computational tool YEASTRACT for predicting novel transcriptional repressors and OptForce strain-design for identifying non-intuitive pathway interventions. The multilevel approach consisted of (i) relieving the pathway from strong transcriptional repression, (ii) removing competing pathways to ensure high carbon capture, and (iii) rewiring precursor pathways to increase the carbon funneling to the desired target. The combination of these interventions led to the establishment of a S. cerevisiae strain with shikimic acid (SA) titer reaching as high as 2.5gL-1, 7-fold higher than the base strain. Further expansion of the platform led to the titer of 2.7gL-1 of muconic acid (MA) and its intermediate protocatechuic acid (PCA) together. Both the SA and MA production platforms demonstrated increases in titer and yield nearly 300% from the previously reported, highest-producing S. cerevisiae strains. Further examination elucidated the diverged impacts of disrupting the oxidative branch (ZWF1) of the pentose phosphate pathway on the titers of desired products belonging to different portions of the pathway. The investigation of other non-intuitive interventions like the deletion of the Pho13 enzyme also revealed the important role of the transaldolase in determining the fate of the carbon flux in the pathways of study. This integrative approach identified novel determinants at both transcriptional and metabolic levels that constrain the flux entering the aromatic amino acid pathway. In the future, this platform can be readily used for engineering the downstream modules toward the production of important plant-sourced aromatic secondary metabolites.


Amino Acids, Aromatic/biosynthesis , Metabolic Engineering , Saccharomyces cerevisiae/metabolism , Amino Acids, Aromatic/genetics , Saccharomyces cerevisiae/genetics
...