Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(14): 18012-18021, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36977206

ABSTRACT

The ultrathin nature of two-dimensional (2D) materials opens up opportunities for creating devices that are substantially thinner than using traditional bulk materials. In this article, monolayer 2D materials grown by the chemical vapor deposition method are used to fabricate ultrathin all-2D lateral diodes. We show that placing graphene electrodes below and above the WS2 monolayer, instead of the same side, results in a lateral device with two different Schottky barrier heights. Due to the natural dielectric environment, the bottom graphene layer is wedged between the WS2 and the SiO2 substrate, which has a different doping level than the top graphene layer that is in contact with WS2 and air. The lateral separation of these two graphene electrodes results in a lateral metal-semiconductor-metal junction with two asymmetric barriers but yet retains its ultrathin form of two-layer thickness. The rectification and diode behavior can be exploited in transistors, photodiodes, and light-emitting devices. We show that the device exhibits a rectification ratio up to 90 under a laser power of 1.37 µW at a bias voltage of ±3 V. We demonstrate that both the back-gate voltage and laser illumination can tune the rectification behavior of the device. Furthermore, the device can generate strong red electroluminescence in the WS2 area across the two graphene electrodes under an average flowing current of 2.16 × 10-5 A. This work contributes to the current understanding of the 2D metal-semiconductor heterojunction and offers an idea to obtain all-2D Schottky diodes by retaining the ultrathin device concept.

2.
ACS Appl Mater Interfaces ; 13(29): 34696-34704, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34278795

ABSTRACT

The key to unlocking the full potential of two-dimensional (2D) materials in ultrathin opto-electronics is their layer-by-layer integration and the ability to produce them on the wafer scale using traditional industry-compatible technology. Here, we demonstrate a novel stacking method for assembling uniform-patterned periodic 2D arrays into vertical-layered heterostructures. The fabricated heterostructure can serve as photodetectors, with graphene electrodes and transition-metal dichalcogenides as the photo-absorber. All 2D materials used are grown into continuous films with only mono- or bilayer thickness. Each layer is prepatterned into a specific shape on a substrate and then transferred to the device substrate with aligned precision. In order to achieve long-range alignment across the wafer, interlocking marker pairs are used to help guide the lateral accuracy and reduce rotational error. We show hundreds of identical devices produced with 2D periodic spacing on a 1 cm × 1 cm SiO2/Si substrate, a fundamental prerequisite for future pixelated detectors. Statistics of the photovoltaic performance of the devices are reported, with values that are comparable to devices made by chemical vapor deposition-grown materials. Our work provides pathways for the large-scale fabrication of ultrathin all-2D opto-electronics that form the basis of the future in 2D-pixelated cameras and displays.

3.
ACS Nano ; 14(11): 15533-15543, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33143420

ABSTRACT

Various 2D materials can be assembled into vertical heterostructure stacks that emit strong electroluminescence. However, to date, most work is done using mechanical exfoliated materials, with little insights gained into the operation limits and failure mechanisms due to the limited number of devices produced and the device-to-device variances. However, when using chemical vapor deposition (CVD) grown 2D crystals, it is possible to construct dozens of devices to generate statistics and ensemble insights, providing a viable way toward scalable industrialization of 2D optoelectronics. In particular, the operation lifetime/duration of electroluminescence and subsequent failure mechanisms are poorly understood. Here, we demonstrate that all-2D vertical layered heterostructure (VLH) devices made using CVD-grown materials (Gr:h-BN:WS2:h-BN:Gr) can generate strong red electroluminescence (EL) with continuous operation for more than 2 h in ambient atmospheric conditions under constant bias. Layer-by-layer controlled assembly is used to achieve graphene top and bottom electrodes in a crossbar geometry, with few layered h-BN continuous films as tunnel barriers for direct carrier injection into semiconducting monolayer WS2 single crystals with direct band gap recombination. Tens of the devices were fabricated in a single chip, with strong EL routinely measured under both positive and negative graphene electrode bias. The success rate for EL emission in devices is over 90%. EL starts to be detected at bias values of ∼5 V, with bright red emission located at the crossbar intersection site, with intensity increasing with applied bias. Long-lived persistent EL is demonstrated for more than 2 h without significant degradation of WS2 under high bias conditions of 20 V. In cycling tests, the EL signal peak position and intensity stay almost the same after several ON/OFF cycles with high bias, which proves that our device has good stability and durability when pulsed. Breakdown of the device is shown to occur at a bias value of ∼35 V, whereby current reduces to zero and EL abruptly stops, due to breakdown of the top graphene electrode, associated with local heating accumulation. This study provides a viable way for wafer-scale fabrication of high-performance 2D EL arrays for ultrathin optoelectronic devices and sheds light on the mechanisms of failure and operation limits of EL devices in ambient conditions.

4.
Adv Mater ; 32(7): e1906958, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31894630

ABSTRACT

A chemical vapor deposition method is developed for thickness-controlled (one to four layers), uniform, and continuous films of both defective gallium(II) sulfide (GaS): GaS0.87 and stoichiometric GaS. The unique degradation mechanism of GaS0.87 with X-ray photoelectron spectroscopy and annular dark-field scanning transmission electron microscopy is studied, and it is found that the poor stability and weak optical signal from GaS are strongly related to photo-induced oxidation at defects. An enhanced stability of the stoichiometric GaS is demonstrated under laser and strong UV light, and by controlling defects in GaS, the photoresponse range can be changed from vis-to-UV to UV-discriminating. The stoichiometric GaS is suitable for large-scale, UV-sensitive, high-performance photodetector arrays for information encoding under large vis-light noise, with short response time (<66 ms), excellent UV photoresponsivity (4.7 A W-1 for trilayer GaS), and 26-times increase of signal-to-noise ratio compared with small-bandgap 2D semiconductors. By comprehensive characterizations from atomic-scale structures to large-scale device performances in 2D semiconductors, the study provides insights into the role of defects, the importance of neglected material-quality control, and how to enhance device performance, and both layer-controlled defective GaS0.87 and stoichiometric GaS prove to be promising platforms for study of novel phenomena and new applications.

5.
ACS Nano ; 13(12): 14162-14171, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31833365

ABSTRACT

Heterophase homojunction formation in atomically thin 2D layers is of great importance for next-generation nanoelectronics and optoelectronics applications. Technologically challenging, controllable transformation between the semiconducting and metallic phases of transition metal chalcogenides is of particular importance. Here, we demonstrate that controlled laser irradiation can be used to directly ablate PdSe2 thin films using high power or trigger the local transformation of PdSe2 into a metallic phase PdSe2-x using lower laser power. Such transformations are possible due to the low decomposition temperature of PdSe2 and a variety of stable phases compared to other 2D transition metal dichalcogenides. Scanning transmission electron microscopy is used to reveal the laser-induced Se-deficient phases of PdSe2 material. The process sensitivity to the laser power allows patterning flexibility for resist-free device fabrication. The laser-patterned devices demonstrate that a laser-induced metallic phase PdSe2-x is stable with increased conductivity by a factor of about 20 compared to PdSe2. These findings contribute to the development of nanoscale devices with homojunctions and scalable methods to achieve structural transformations in 2D materials.

6.
ACS Appl Mater Interfaces ; 11(43): 40274-40282, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31618001

ABSTRACT

Two-dimensional (2D) materials are atomically thick and without out-of-plane dangling bonds. As a result, they could break the confinement of lattice matching, and thus can be freely mixed and matched together to construct vertical van der Waals heterostructures. Here, we demonstrated an asymmetrical vertical structure of graphene/hexagonal boron nitride (h-BN)/tungsten disulfide (WS2)/graphene using all chemical vapor deposition grown 2D materials. Three building blocks are utilized in this construction: conductive graphene as a good alternative for the metal electrode due to its tunable Fermi level and ultrathin nature, semiconducting transition-metal dichalcogenides (TMDs) as an ultrathin photoactive material, and insulating h-BNas a tunneling barrier. Such an asymmetrical vertical structure exhibits a much stronger photovoltaic effect than the symmetrical vertical one without h-BN. By changing the sequence of h-BN in the vertical stack, we could even control the electron flow direction. Also, improvement has been further made by increasing the thickness of h-BN. The photovoltaic effect is attributed to different possibilities of excited electrons on TMDs to migrate to top and bottom graphene electrodes, which is caused by potential differences introduced by an insulating h-BN layer. This study shows that h-BN could be effectively used as a tunneling barrier in the asymmetrical vertical heterostructure to improve photovoltaic effect and control the electron flow direction, which is crucial for the design of other 2D vertical heterostructures to meet various needs of electronic and optoelectronic devices.

7.
Adv Mater ; 31(46): e1904251, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31559669

ABSTRACT

2D crystals are typically uniform and periodic in-plane with stacked sheet-like structure in the out-of-plane direction. Breaking the in-plane 2D symmetry by creating unique lattice structures offers anisotropic electronic and optical responses that have potential in nanoelectronics. However, creating nanoscale-modulated anisotropic 2D lattices is challenging and is mostly done using top-down lithographic methods with ≈10 nm resolution. A phase transformation mechanism for creating 2D striated lattice systems is revealed, where controlled thermal annealing induces Se loss in few-layered PdSe2 and leads to 1D sub-nm etched channels in Pd2 Se3 bilayers. These striated 2D crystals cannot be described by a typical unit cells of 1-2 Å for crystals, but rather long range nanoscale periodicity in each three directions. The 1D channels give rise to localized conduction states, which have no bulk layered counterpart or monolayer form. These results show how the known family of 2D crystals can be extended beyond those that exist as bulk layered van der Waals crystals by exploiting phase transformations by elemental depletion in binary systems.

8.
ACS Appl Mater Interfaces ; 11(2): 2234-2242, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30605329

ABSTRACT

Atomically thin vertical heterostructures are promising candidates for optoelectronic applications, especially for flexible and transparent technologies. Here, we show how ultrathin all two-dimensional vertical-stacked type-II heterostructure devices can be assembled using only materials grown by chemical vapor deposition, with graphene (Gr) as top and bottom electrodes and MoS2/WS2 as the active semiconductor layers in the middle. Furthermore, we show that the stack symmetry, which dictates the type-II directionality, is the dominant factor in controlling the photocurrent direction upon light irradiation, whereas in homobilayers, photocurrent direction cannot be easily controlled because the tunnel barrier is determined by the doping levels of the graphene, which appears fixed for top and bottom graphene layers due to their dielectric environments. Therefore, the ability to direct photovoltaic current flow is demonstrated to be only possible using heterobilayers (HBs) and not homobilayers. We study the photovoltaic effects in more than 40 devices, which allows for statistical verification of performance and comparative behavior. The photovoltage in the graphene/transition-metal dichalcogenide-heterobilayer/graphene (Gr/TMD-HB (MoS2/WS2)/Gr) increases up to 10 times that generated in the monolayer TMD devices under the same optical illumination power, due to efficient charge transfer between WS2 and MoS2 and extraction to graphene electrodes. By applying external gate voltages ( Vg), the band alignment can be tuned, which in turn controls the photovoltaic effect in the vertical heterostructures. The tunneling-assisted interlayer charge recombination also plays a significant role in modulating the photovoltaic effect in the Gr/TMD-HB/Gr. These results provide important insights into how layer symmetry in vertical-stacked graphene/TMD/graphene ultrathin optoelectronics can be used to control electron flow directions during photoexcitation and open up opportunities for tandem cell assembly.

9.
Nat Commun ; 9(1): 5190, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30518844

ABSTRACT

Graphene has emerged as a promising material for optoelectronics due to its potential for ultrafast and broad-band photodetection. The photoresponse of graphene junctions is characterized by two competing photocurrent generation mechanisms: a conventional photovoltaic effect and a more dominant hot-carrier-assisted photothermoelectric (PTE) effect. The PTE effect is understood to rely on variations in the Seebeck coefficient through the graphene doping profile. A second PTE effect can occur across a homogeneous graphene channel in the presence of an electronic temperature gradient. Here, we study the latter effect facilitated by strongly localised plasmonic heating of graphene carriers in the presence of nanostructured electrical contacts resulting in electronic temperatures of the order of 2000 K. At certain conditions, the plasmon-induced PTE photocurrent contribution can be isolated. In this regime, the device effectively operates as a sensitive electronic thermometer and as such represents an enabling technology for development of hot carrier based plasmonic devices.

10.
Sci Rep ; 6: 30210, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27443219

ABSTRACT

We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers possess lower doping concentration, and improved carrier mobilities compared to graphene films produced by conventional transfer methods onto untreated SiO2/Si, SAM-modified and hBN covered SiO2/Si substrates. Moreover, we show that the top hBN layer used in the transfer process acts as an effective top encapsulation resulting in improved stability to ambient exposure. The transfer method is applicable to other CVD-grown 2D materials on copper foils, thereby facilitating the preparation of van der Waals heterostructures with controlled doping.

11.
Nano Lett ; 15(5): 3458-64, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25915785

ABSTRACT

Hybrid plasmonic metal-graphene systems are emerging as a class of optical metamaterials that facilitate strong light-matter interactions and are of potential importance for hot carrier graphene-based light harvesting and active plasmonic applications. Here we use femtosecond pump-probe measurements to study the near-field interaction between graphene and plasmonic gold nanodisk resonators. By selectively probing the plasmon-induced hot carrier dynamics in samples with tailored graphene-gold interfaces, we show that plasmon-induced hot carrier generation in the graphene is dominated by direct photoexcitation with minimal contribution from charge transfer from the gold. The strong near-field interaction manifests as an unexpected and long-lived extrinsic optical anisotropy. The observations are explained by the action of highly localized plasmon-induced hot carriers in the graphene on the subresonant polarizability of the disk resonator. Because localized hot carrier generation in graphene can be exploited to drive electrical currents, plasmonic metal-graphene nanostructures present opportunities for novel hot carrier device concepts.

SELECTION OF CITATIONS
SEARCH DETAIL
...