Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166783, 2023 10.
Article in English | MEDLINE | ID: mdl-37302424

ABSTRACT

OBJECTIVES: Bone marrow mesenchymal stem cells (BMSCs) are instrumental in bone development, metabolism, and marrow microenvironment homeostasis. Despite this, the relevant effects and mechanisms of BMSCs on congenital scoliosis (CS) remain undefined. Herein, it becomes our focus to reveal the corresponding effects and mechanisms implicated. METHODS: BMSCs from CS patients (hereafter referred as CS-BMSCs) and healthy donors (NC-BMSCs) were observed and identified. Differentially expressed genes in BMSCs were analyzed utilizing scRNA-seq and RNA-seq profiles. The multi-differentiation potential of BMSCs following the transfection or infection was evaluated. The expression levels of factors related to osteogenic differentiation and Wnt/ß-catenin pathway were further determined as appropriate. RESULTS: A decreased osteogenic differentiation ability was shown in CS-BMSCs. Both the proportion of LEPR+ BMSCs and the expression level of WNT1-inducible-signaling pathway protein 2 (WISP2) were decreased in CS-BMSCs. WISP2 knockdown suppressed the osteogenic differentiation of NC-BMSCs, while WISP2 overexpression facilitated the osteogenesis of CS-BMSCs via acting on the Wnt/ß-catenin pathway. CONCLUSIONS: Our study collectively indicates WISP2 knockdown blocks the osteogenic differentiation of BMSCs in CS by regulating Wnt/ß-catenin signaling, thus providing new insights into the aetiology of CS.


Subject(s)
Mesenchymal Stem Cells , Scoliosis , Humans , beta Catenin/metabolism , Cell Differentiation/genetics , Down-Regulation , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Scoliosis/genetics , Scoliosis/metabolism
2.
Biomark Res ; 11(1): 39, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37055817

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is the most prevalent age-related disease in the world. Chondrocytes undergo an age-dependent decline in their proliferation and synthetic capacity, which is the main cause of OA development. However, the intrinsic mechanism of chondrocyte senescence is still unclear. This study aimed to investigate the role of a novel long non-coding RNA (lncRNA), AC006064.4-201 in the regulation of chondrocyte senescence and OA progression and to elucidate the underlying molecular mechanisms. METHODS: The function of AC006064.4-201 in chondrocytes was assessed using western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence (IF) and ß-galactosidase staining. The interaction between AC006064.4-201 and polypyrimidine tract-binding protein 1 (PTBP1), as well as cyclin-dependent kinase inhibitor 1B (CDKN1B), was evaluated using RPD-MS, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down assays. Mice models were used to investigate the role of AC006064.4-201 in post-traumatic and age-related OA in vivo. RESULTS: Our research revealed that AC006064.4-201 was downregulated in senescent and degenerated human cartilage, which could alleviate senescence and regulate metabolism in chondrocytes. Mechanically, AC006064.4-201 directly interacts with PTBP1 and blocks the binding between PTBP1 and CDKN1B mRNA, thereby destabilizing CDKN1B mRNA and decreasing the translation of CDKN1B. The in vivo experiments were consistent with the results of the in vitro experiments. CONCLUSIONS: The AC006064.4-201/PTBP1/CDKN1B axis plays an important role in OA development and provides new molecular markers for the early diagnosis and treatment of OA in the future. Schematic diagram of AC006064.4-201 mechanism. A schematic diagram of the mechanism underlying the effect of AC006064.4-201.

3.
Aging (Albany NY) ; 15(5): 1564-1590, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36897170

ABSTRACT

Circular RNAs (circRNAs) have been demonstrated to have critical regulatory roles in tumorigenesis. However, the contribution of circRNAs to OS (osteosarcoma) remains largely unknown. circRNA deep sequencing was performed to the expression of circRNAs between OS and chondroma tissues. The regulatory and functional role of circRBMS3 (a circRNA derived from exons 7 to 10 of the RBMS3 gene, hsa_circ_0064644) upregulation was examined in OS and was validated in vitro and in vivo, upstream regulator and downstream target of circRBMS3 were both explored. RNA pull down, a luciferase reporter assay, biotin-coupled microRNA capture and fluorescence in situ hybridization were used to evaluate the interaction between circRBMS3 and micro (mi)-R-424-5p. For in vivo tumorigenesis experiments, Subcutaneous and Orthotopic xenograft OS mouse models were built. Expression of circRBMS3 was higher in OS tissues due to the regulation of adenosine deaminase 1-acting on RNA (ADAR1), an abundant RNA editing enzyme. Our in vitro data indicated that ShcircRBMS3 inhibits the proliferation and migration of osteosarcoma cells. Mechanistically, we showed that circRBMS3 could regulate eIF4B and YRDC, through 'sponging' miR-424-5p. Furthermore, knockdown of circRBMS3 inhibited malignant phenotypes and bone destruction of OS in vivo. Our results reveal an important role for a novel circRBMS3 in the growth and metastasis of malignant tumor cells and offer a fresh perspective on circRNAs in OS progression.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , Animals , Mice , RNA, Circular/genetics , RNA, Circular/metabolism , In Situ Hybridization, Fluorescence , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Carcinogenesis/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/genetics , GTP-Binding Proteins/genetics
4.
Sci Adv ; 9(6): eade5584, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36753544

ABSTRACT

Osteoarthritis (OA) is a degenerative disease with a series of metabolic changes accompanied by many altered enzymes. Here, we report that the down-regulated dimethylarginine dimethylaminohydrolase-1 (DDAH1) is accompanied by increased asymmetric dimethylarginine (ADMA) in degenerated chondrocytes and in OA samples. Global or chondrocyte-conditional knockout of ADMA hydrolase DDAH1 accelerated OA development in mice. ADMA induces the degeneration and senescence of chondrocytes and reduces the extracellular matrix deposition, thereby accelerating OA progression. ADMA simultaneously binds to SOX9 and its deubiquitinating enzyme USP7, blocking the deubiquitination effects of USP7 on SOX9 and therefore leads to SOX9 degradation. The ADMA level in synovial fluids of patients with OA is increased and has predictive value for OA diagnosis with good sensitivity and specificity. Therefore, activating DDAH1 to reduce ADMA level might be a potential therapeutic strategy for OA treatment.


Subject(s)
Arginine , Mice , Animals , Ubiquitin-Specific Peptidase 7 , Arginine/metabolism
5.
Front Pharmacol ; 13: 999157, 2022.
Article in English | MEDLINE | ID: mdl-36188607

ABSTRACT

Objective: Osteoporosis is a common musculoskeletal disease. Fractures caused by osteoporosis place a huge burden on global healthcare. At present, the mechanism of metabolic-related etiological heterogeneity of osteoporosis has not been explored, and no research has been conducted to analyze the metabolic-related phenotype of osteoporosis. This study aimed to identify different types of osteoporosis metabolic correlates associated with underlying pathogenesis by machine learning. Methods: In this study, the gene expression profiles GSE56814 and GSE56815 of osteoporosis patients were downloaded from the GEO database, and unsupervised clustering analysis was used to identify osteoporosis metabolic gene subtypes and machine learning to screen osteoporosis metabolism-related characteristic genes. Meanwhile, multi-omics enrichment was performed using the online Proteomaps tool, and the results were validated using external datasets GSE35959 and GSE7429. Finally, the immune and stromal cell types of the signature genes were inferred by the xCell method. Results: Based on unsupervised cluster analysis, osteoporosis metabolic genotyping can be divided into three distinct subtypes: lipid and steroid metabolism subtypes, glycolysis-related subtypes, and polysaccharide subtypes. In addition, machine learning SVM identified 10 potentially metabolically related genes, GPR31, GATM, DDB2, ARMCX1, RPS6, BTBD3, ADAMTSL4, COQ6, B3GNT2, and CD9. Conclusion: Based on the clustering analysis of gene expression in patients with osteoporosis and machine learning, we identified different metabolism-related subtypes and characteristic genes of osteoporosis, which will help to provide new ideas for the metabolism-related pathogenesis of osteoporosis and provide a new direction for follow-up research.

6.
Sci Adv ; 8(13): eabk0011, 2022 04.
Article in English | MEDLINE | ID: mdl-35353555

ABSTRACT

Osteoarthritis (OA) is a common joint disease characterized by progressive loss of cartilage and reduction in lubricating synovial fluid, which lacks effective treatments currently. Here, we propose a hydrogel-based miRNA delivery strategy to rejuvenate impaired cartilage by creating a regenerative microenvironment to mitigate chondrocyte senescence that mainly contributes to cartilage breakdown during OA development. An aging-related miRNA, miR-29b-5p, was first found to be markedly down-regulated in OA cartilage, and their up-regulation suppressed the expression of matrix metalloproteinases and senescence-associated genes (P16INK4a/P21) via ten-eleven-translocation enzyme 1 (TET1). An injectable bioactive self-assembling peptide nanofiber hydrogel was applied to deliver agomir-29b-5p, which was functionalized by conjugating a stem cell-homing peptide SKPPGTSS for endogenous synovial stem cell recruitment simultaneously. Sustained miR-29b-5p delivery and recruitment of synovial stem cells and their subsequent differentiation into chondrocytes led to successful cartilage repair and chondrocyte rejuvenation. This strategy enables miRNA-based therapeutic modality to become a viable alternative for surgery in OA treatment.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Animals , Cartilage, Articular/metabolism , Hydrogels/therapeutic use , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoarthritis/genetics , Osteoarthritis/therapy , Rats , Regeneration , Stem Cells/metabolism
7.
Exp Mol Med ; 54(3): 285-297, 2022 03.
Article in English | MEDLINE | ID: mdl-35332256

ABSTRACT

Low back pain, triggered by intervertebral disc degeneration (IVDD), is one of the most common causes of disability and financial expenditure worldwide. However, except for surgical interventions, effective medical treatment to prevent the progression of IVDD is lacking. This study aimed to investigate the effects of circKIF18A, a novel circRNA, on IVDD progression and to explore its underlying mechanism in IVDD. In this study, we found that oxidative stress was positively correlated with nucleus pulposus cell (NPC) senescence in IVDD and that circKIF18A was downregulated in IVDD and attenuated senescent phenotypes such as cell cycle arrest and extracellular matrix degradation in NPCs. Mechanistically, circKIF18A competitively suppressed ubiquitin-mediated proteasomal degradation of MCM7, and the protective effects of circKIF18A on NPCs were partially mediated by MCM7 under oxidative stress. Intradiscal injection of adenoviral circKIF18A ameliorated IVDD in a rat model. This study revealed that circKIF18A regulates NPC degeneration by stabilizing MCM7 and identified a novel signaling pathway, the circKIF18A-MCM7 axis, for anti-senescence molecular therapy in IVDD.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Cellular Senescence/genetics , Down-Regulation , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Nucleus Pulposus/metabolism , Oxidative Stress , Rats
8.
Ann Rheum Dis ; 80(9): 1209-1219, 2021 09.
Article in English | MEDLINE | ID: mdl-34039624

ABSTRACT

OBJECTIVES: Circular RNAs (circRNAs) have emerged as significant biological regulators. Herein, we aimed to elucidate the role of an unidentified circRNA (circPDE4B) that is reportedly downregulated in osteoarthritis (OA) tissues. METHODS: The effects of circPDE4B were explored in human and mouse chondrocytes in vitro. Specifically, RNA pull-down (RPD)-mass spectrometry analysis (MS), immunoprecipitation, glutathione-S-transferase (GST) pull-down, RNA immunoprecipitation and RPD assays were performed to verify the interactions between circPDE4B and the RIC8 guanine nucleotide exchange factor A (RIC8A)/midline 1 (MID1) complex. A mouse model of OA was also employed to confirm the role of circPDE4B in OA pathogenesis in vivo. RESULTS: circPDE4B regulates chondrocyte cell viability and extracellular matrix metabolism. Mechanistically, FUS RNA binding protein (FUS) was found to promote the splicing of circPDE4B, while downregulation of circPDE4B in OA is partially caused by upstream inhibition of FUS. Moreover, circPDE4B facilitates the association between RIC8A and MID1 by acting as a scaffold to promote RIC8A degradation through proteasomal degradation. Furthermore, ubiquitination of RIC8A at K415 abrogates RIC8A degradation. The circPDE4B-RIC8A axis was observed to play an important role in regulating downstream p38 mitogen-activated protein kinase (MAPK) signalling. Furthermore, delivery of a circPDE4B adeno-associated virus (AAV) abrogates the breakdown of cartilage matrix by medial meniscus destabilisation in mice, whereas a RIC8A AAV induces the opposite effect. CONCLUSION: This work highlights the function of the circPDE4B-RIC8A axis in OA joints, as well as its regulation of MAPK-p38, suggesting this axis as a potential therapeutic target for OA.


Subject(s)
Cartilage, Articular/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Guanine Nucleotide Exchange Factors/metabolism , Osteoarthritis/genetics , RNA, Circular , Regeneration/genetics , Animals , Cartilage, Articular/cytology , Cartilage, Articular/physiology , Cell Survival/genetics , Chondrocytes/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Humans , Mice , Osteoarthritis/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Proteolysis , RNA-Binding Protein FUS/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
Theranostics ; 11(4): 1877-1900, 2021.
Article in English | MEDLINE | ID: mdl-33408787

ABSTRACT

Osteoarthritis (OA), characterized as an end-stage syndrome caused by risk factors accumulated with age, significantly impacts quality of life in the elderly. Circular RNAs (circRNAs) are receiving increasing attention regarding their role in OA progression and development; however, their role in the regulation of age-induced and oxidative stress-related OA remains unclear. Methods: Herein, we explored oxidative stress in articular cartilage obtained from patients of different ages. The presence of circRSU1 was detected using RNA sequencing of H2O2-stimulated primary human articular chondrocytes (HCs), and validated in articular cartilage and HCs using fluorescence in situ hybridization (FISH) staining. miR-93-5p and mitogen-activated protein kinase kinase kinase 8 (MAP3K8) were identified as interactive circRSU1 partners based on annotation and target prediction databases, and their associations were identified through dual-luciferase reporter analysis. The effect of the circRSU1-miR-93-5p-MAP3K8 axis on HCs was confirmed using western blot, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and reactive oxygen species (ROS) analyses. CircRSU1 and its mutant were ectopically expressed in mice to assess their effects in destabilization of the medial meniscus (DMM) in mice. Results: We found a marked upregulation of circRSU1 in H2O2-treated HCs and OA articular cartilage from elderly individuals. circRSU1 was induced by IL-1ß and H2O2 stimulation, and it subsequently regulated oxidative stress-triggered inflammation and extracellular matrix (ECM) maintenance in HCs, by modulating the MEK/ERK1/2 and NF-κB cascades. Ectopic expression of circRSU1 in mouse joints promoted the production of ROS and loss of ECM, which was rescued by mutation of the mir-93-5p target sequence in circRSU1. Conclusion: We identified a circRSU1-miR-93-5p-MAP3K8 axis that modulates the progression of OA via oxidative stress regulation, which could serve as a potential target for OA therapy.


Subject(s)
Cartilage, Articular/pathology , MAP Kinase Kinase Kinases/metabolism , MicroRNAs/genetics , Osteoarthritis/pathology , Oxidative Stress , Proto-Oncogene Proteins/metabolism , RNA, Circular/genetics , Transcription Factors/genetics , Animals , Apoptosis , Biomarkers/metabolism , Cartilage, Articular/metabolism , Cell Proliferation , Cells, Cultured , Gene Expression Regulation , Humans , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mice, Inbred C57BL , Osteoarthritis/genetics , Osteoarthritis/metabolism , Proto-Oncogene Proteins/genetics
10.
Front Cell Dev Biol ; 8: 595969, 2020.
Article in English | MEDLINE | ID: mdl-33178705

ABSTRACT

Lumbar intervertebral disc degeneration (IVDD) is the most common cause of low back pain (LBP). Among all the factors leading to IVDD, lumbar cartilage endplate (LCE) degeneration is considered a key factor. In the present study, we investigate the effect and regulation of carbonic anhydrase 12 (CA12) in LCE, which catalyzes hydration of CO2 and participates in a variety of biological processes, including acid-base balance and calcification. Our results show that CA12, downregulated in degenerated LCE, could maintain anabolism and prevent calcification in the endplate. Furthermore, CA12 is regulated by the IGF-1/IGF-1R/PI3K/CREB signaling pathway. When we overexpressed CA12 in LCE, the decreased anabolism induced by inflammatory cytokine could be rescued. In contrast, reducing CA12 expression, either with siRNA, PI3Kinhibitor, or CREB inhibitor, could downregulate anabolism and cause apoptosis and then calcification in LCE. The protective effects of IGF-1 are even diminished with low-expressed CA12. Similar results are also obtained in an ex vivo model. Consequently, our results reveal a novel pathway, IGF-1/IGF-1R/PI3K/CREB/CA12, that takes a protective role in LCE degeneration by maintaining anabolism and preventing calcification and apoptosis. This study proposes a novel molecular target, CA12, to delay LCE degeneration.

11.
Theranostics ; 10(20): 9113-9131, 2020.
Article in English | MEDLINE | ID: mdl-32802182

ABSTRACT

Rationale: Osteoarthritis (OA) is the most common joint disease worldwide. Previous studies have identified the imbalance between extracellular matrix (ECM) catabolism and anabolism in cartilage tissue as the main cause. To date, there is no cure for OA despite a few symptomatic treatments. This study aimed to investigate the role of CircCDK14, a novel circRNA factor, in the progression of OA, and to elucidate its underlying molecular mechanisms. Methods: The function of CircCDK14 in OA, as well as the interaction between CircCDK14 and its downstream target (miR-125a-5p) and mRNA target (Smad2), was evaluated by western blot (WB), immunofluorescence (IF), RNA immunoprecipitation (RIP), quantitative RT-PCR, luciferase assay and fluorescence in situ hybridization (FISH). Rabbit models were introduced to examine the function and mechanism of CircCDK14 in OA in vivo. Results: In our present study, we found that CircCDK14, while being down-regulated in the joint wearing position, regulated metabolism, inhibited apoptosis and promoted proliferation in the cartilage. Mechanically, the protective effect of CircCDK14 was mediated by miR-125a-5p sponging, which downregulated the Smad2 expression and led to the dysfunction of TGF-ß signaling pathway. Intra-articular injection of adeno-associated virus-CircCDK14 also alleviated OA in the rabbit model. Conclusion: Our study revealed an important role of CircCDK14/miR-125a-5p/Smad2 axis in OA progression and provided a potential molecular therapeutic strategy for the treatment of OA.


Subject(s)
Cyclin-Dependent Kinases/metabolism , MicroRNAs/metabolism , Osteoarthritis/metabolism , RNA, Circular/metabolism , Smad2 Protein/metabolism , Animals , Apoptosis/physiology , Cartilage/metabolism , Cell Proliferation/physiology , Chondrocytes/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation/physiology , Extracellular Matrix/metabolism , Humans , In Situ Hybridization, Fluorescence/methods , Male , Rabbits , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism
13.
Mol Cancer ; 18(1): 150, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31665067

ABSTRACT

BACKGROUND: CircMYO10 is a circular RNA generated by back-splicing of gene MYO10 and is upregulated in osteosarcoma cell lines, but its functional role in osteosarcoma is still unknown. This study aimed to clarify the mechanism of circMYO10 in osteosarcoma. METHODS: CircMYO10 expression in 10 paired osteosarcoma and chondroma tissues was assessed by quantitative reverse transcription polymerase chain reaction (PCR). The function of circMYO10/miR-370-3p/RUVBL1 axis was assessed regarding two key characteristics: proliferation and endothelial-mesenchymal transition (EMT). Bioinformatics analysis, western blotting, real-time PCR, fluorescence in situ hybridization, immunoprecipitation, RNA pull-down assays, luciferase reporter assays, chromatin immunoprecipitation, and rescue experiments were used to evaluate the mechanism. Stably transfected MG63 cells were injected via tail vein or subcutaneously into nude mice to assess the role of circMYO10 in vivo. RESULTS: CircMYO10 was significantly upregulated, while miR-370-3p was downregulated, in osteosarcoma cell lines and human osteosarcoma samples. Silencing circMYO10 inhibited cell proliferation and EMT in vivo and in vitro. Mechanistic investigations revealed that miR-370-3p targets RUVBL1 directly, and inhibits the interaction between RUVBL1 and ß-catenin/LEF1 complex while circMYO10 showed a contrary effect via the inhibition of miR-370-3p. RUVBL1 was found to be complexed with chromatin remodeling and histone-modifying factor TIP60, and lymphoid enhancer factor-1 (LEF1) to promote histone H4K16 acetylation (H4K16Ac) in the vicinity of the promoter region of gene C-myc. Chromatin immunoprecipitation methods showed that miR-370-3p sponge promotes H4K16Ac in the indicated region, which is partially abrogated by RUVBL1 small hairpin RNA (shRNA) while circMYO10 showed a contrary result via the inhibition of miR-370-3p. Either miR-370-3p sponge or ShRUVBL1 attenuated circMYO10-induced phenotypes in osteosarcoma cell lines. MiR-370-3p inhibition abrogated the inhibition of proliferation, EMT of osteosarcoma cells in vitro and in vivo seen upon circMYO10 suppression via Wnt/ß-catenin signaling. CONCLUSIONS: CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to promote chromatin remodeling and thus enhances the transcriptional activity of ß-catenin/LEF1 complex, which indicates that circMYO10 may be a potential therapeutic target for osteosarcoma treatment.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Carrier Proteins/genetics , Chromatin Assembly and Disassembly , DNA Helicases/genetics , MicroRNAs/genetics , Myosins/genetics , Osteosarcoma/genetics , Osteosarcoma/metabolism , RNA, Circular , 3' Untranslated Regions , Animals , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Histones/metabolism , Humans , Lymphoid Enhancer-Binding Factor 1/metabolism , Methylation , Mice , Neoplasm Metastasis , Osteosarcoma/pathology , Promoter Regions, Genetic , Protein Binding , RNA Interference , Wnt Signaling Pathway , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...