Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Biomed Sci ; 31(1): 30, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38500170

BACKGROUND: Acute lung injury (ALI) is a life-threatening respiratory condition characterized by severe inflammation and lung tissue damage, frequently causing rapid respiratory failure and long-term complications. The microRNA let-7a-5p is involved in the progression of lung injury, inflammation, and fibrosis by regulating immune cell activation and cytokine production. This study aims to use an innovative cellular electroporation platform to generate extracellular vesicles (EVs) carring let-7a-5p (EV-let-7a-5p) derived from transfected Wharton's jelly-mesenchymal stem cells (WJ-MSCs) as a potential gene therapy for ALI. METHODS: A cellular nanoporation (CNP) method was used to induce the production and release of EV-let-7a-5p from WJ-MSCs transfected with the relevant plasmid DNA. EV-let-7a-5p in the conditioned medium were isolated using a tangential flow filtration (TFF) system. EV characterization followed the minimal consensus guidelines outlined by the International Society for Extracellular Vesicles. We conducted a thorough set of therapeutic assessments, including the antifibrotic effects using a transforming growth factor beta (TGF-ß)-induced cell model, the modulation effects on macrophage polarization, and the influence of EV-let-7a-5p in a rat model of hyperoxia-induced ALI. RESULTS: The CNP platform significantly increased EV secretion from transfected WJ-MSCs, and the encapsulated let-7a-5p in engineered EVs was markedly higher than that in untreated WJ-MSCs. These EV-let-7a-5p did not influence cell proliferation and effectively mitigated the TGF-ß-induced fibrotic phenotype by downregulating SMAD2/3 phosphorylation in LL29 cells. Furthermore, EV-let-7a-5p regulated M2-like macrophage activation in an inflammatory microenvironment and significantly induced interleukin (IL)-10 secretion, demonstrating their modulatory effect on inflammation. Administering EVs from untreated WJ-MSCs slightly improved lung function and increased let-7a-5p expression in plasma in the hyperoxia-induced ALI rat model. In comparison, EV-let-7a-5p significantly reduced macrophage infiltration and collagen deposition while increasing IL-10 expression, causing a substantial improvement in lung function. CONCLUSION: This study reveals that the use of the CNP platform to stimulate and transfect WJ-MSCs could generate an abundance of let-7a-5p-enriched EVs, which underscores the therapeutic potential in countering inflammatory responses, fibrotic activation, and hyperoxia-induced lung injury. These results provide potential avenues for developing innovative therapeutic approaches for more effective interventions in ALI.


Acute Lung Injury , Extracellular Vesicles , Hyperoxia , MicroRNAs , Rats , Animals , Cells, Cultured , Hyperoxia/metabolism , Inflammation , MicroRNAs/genetics , MicroRNAs/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Extracellular Vesicles/physiology , Fibrosis , Acute Lung Injury/therapy , Acute Lung Injury/metabolism
2.
Polymers (Basel) ; 14(7)2022 Apr 05.
Article En | MEDLINE | ID: mdl-35406348

Due to the limitation in the current treatment modalities, such as secondary surgery in ACI and fibrocartilage formation in microfracture surgery, various scaffolds or hydrogels have been developed for cartilage regeneration. In the present study, we used sodium periodate to oxidize methylcellulose and formed dialdehyde methylcellulose (DAC) after dialysis and freeze-drying process, DAC was further mixed with succinyl-chitosan (SUC) to form an DAC-SUC in situ forming hydrogel. The hydrogel is a stiffness, elastic-like and porous hydrogel according to the observation of SEM and rheological analysis. DAC-SUC13 hydrogel possess well cell-compatibility as well as biodegradability. Most bone marrow mesenchymal stem cells (BM-pMSCs) were alive in the hydrogel and possess chondrogenesis potential. According to the results of animal study, we found DAC-SUC13 hydrogel can function as a stem cell carrier to promote glycosaminoglycans and type II collagen synthesis in the osteochondral defects of porcine knee. These findings suggested that DAC-SUC13 hydrogel combined with stem cell is a potential treatment for cartilage defects repair in the future.

3.
Cytotherapy ; 24(1): 72-85, 2022 01.
Article En | MEDLINE | ID: mdl-34696962

BACKGROUND AIMS: Infrapatellar fat pad-derived mesenchymal stromal cells (IFP-MSCs) have not yet been used in a human clinical trial. In this open-label phase 1 study, patients with knee osteoarthritis (OA) received a single intra-articular injection of autologous IFP-MSCs. Safety was assessed through physical examination of the knee joint, vital signs, laboratory tests and adverse events. Efficacy was evaluated with regard to pain and function using questionnaires, x-ray and magnetic resonance imaging (MRI). Indoleamine-2,3-dioxygenase (IDO) expression in IFP-MSCs primed with interferon gamma was used as an in vitro potency measurement in investigating the correlations of clinical outcomes. METHODS: Twelve patients with symptomatic knee OA were recruited. IFP adipose tissue was harvested from each patient's knee through surgical excision for IFP-MSC manufacturing. Cryopreserved IFP-MSCs (5 × 107 cells) were injected into the knee joint immediately after thawing. RESULTS: No significant adverse events were observed. Patients who received IFP-MSCs exhibited clinically significant pain and functional improvement at 48-week follow-up. The MRI Osteoarthritis Knee Score average was also significantly reduced from 100.2 before injection to 85.0 at 48 weeks after injection. The IDO expression of the primed IFP-MSCs of the 12 patients was correlated with clinical outcomes after injection. CONCLUSIONS: A single intra-articular injection of IFP-MSCs appears to be a safe therapy for treating knee OA and may improve disease symptoms. IDO measurement of primed IFP-MSCs has potential as a potency marker of MSC products for immunomodulatory therapy.


Mesenchymal Stem Cells , Osteoarthritis, Knee , Adipose Tissue , Humans , Injections, Intra-Articular , Knee Joint , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/therapy
4.
J Microbiol Immunol Infect ; 53(4): 525-531, 2020 Aug.
Article En | MEDLINE | ID: mdl-31607570

BACKGROUND: Prosthesis infection is a difficult-to-treat situation. Hydrogel is a novel biomaterial, which can be applied by simply spraying or by coating on implants before surgery and can be easily mixed with antibiotics. METHODS: In order to evaluate the potential use of antibiotic-loaded hydrogel, we incorporated vancomycin into oxidized hyaluronic acid (HA) and adipic acid dihydrazide and evaluated the drug release and antimicrobial activity against methicillin-resistant Staphylococcus aureus (ATCC 29213). RESULTS: The average release percentage of vancomycin on day 3 was about 86%. The antibiotic-loaded gel was biocompatible with mesenchymal stem cell, MC3T3, and L929 cell lines. The in vitro inhibition zones of vancomycin-loaded hydrogel [500X minimal inhibition concentration (MIC), 50X MIC, 10X MIC, and blank hydrogel] were 21, 13, 9, and 5 mm, respectively. In the Ti6Al4V implant biofilm model, 0.01-1% vancomycin-loaded gel exhibited significant anti-biofilm activity, measured by the MTT assay. CONCLUSIONS: Vancomycin could be loaded onto oxidized HA and adipic acid dihydrazide, which exhibited excellent drug release and in vitro antimicrobial activity with minimal cell toxicity.


Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Adipates/chemistry , Cell Line , Humans , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/microbiology , Microbial Sensitivity Tests , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/microbiology , Vancomycin/chemistry
5.
PLoS One ; 13(11): e0205563, 2018.
Article En | MEDLINE | ID: mdl-30462647

Osteoarthritis (OA), one of the most common joint disease, affects more than 80% of the population aged 70 or over. Mesenchymal stem cells (MSCs) show multi-potent differentiation and self-renewal capability, and, after exposure to an inflammatory environment, also exhibit immunosuppressive properties. In this study, we have used a model of lipopolysaccharide (LPS)-stimulated chondrocytes to evaluate MSC anti-inflammatory efficacy. The anti-inflammatory mechanism was tested in two cell-contained culture systems: (i) MSC-chondrocyte indirect contact system and (ii) MSC-chondrocyte direct contact system, and one cytokine-only culture system: MSC-conditioned medium (CM) system. Results showed that MSCs reduced chondrocyte inflammation through both paracrine secretion and cell-to-cell contact. The inflammation-associated, and free-radical-related genes were down-regulated significantly in the direct contact system on 24 h, however, the TNF-α. IL-6 were upregulated and aggrecan, COLII were downregulated on 72 h in direct contact system. Moreover, we found CM produced by MSC possess well therapeutic effect on inflammatory chondorcyte, and the 10-fold concentrated MSC-conditioned medium could down-regulated chondorcyte synthesis inflammation-associated, and free-radical-related genes, such as TNF-α, IL-1ß, IL-6 and iNOS even treated for 72 h. In conclusion, MSC-CM showed great potential for MSC-based therapy for OA.


Chondrocytes/pathology , Culture Media, Conditioned/pharmacology , Inflammation/pathology , Mesenchymal Stem Cells/cytology , Animals , Cell Count , Cell Shape/drug effects , Cell Survival/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Coculture Techniques , Gene Expression Regulation/drug effects , Inflammation/genetics , Lipopolysaccharides , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Sus scrofa
...