Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
J Med Chem ; 67(17): 15807-15815, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39146536

ABSTRACT

Targeted protein degradation through the lysosomal pathway has attracted increasing attention and expanded the scope of degradable proteins. However, the endogenous lysosomal degradation strategies are mainly based on antibodies or nanobodies. Effective small molecule lysosomal degraders are still rather rare. Herein, a new lysosomal degradation approach, termed peptide-mediated small molecule lysosome-targeting chimeras (PSMLTACs), was developed by the incorporation of small molecule ligands with a lysosome-sorting NPGY motif containing the cell-penetrating peptide. PSMLTACs were successfully applied to degrade both membrane and intracellular targets. In particular, the PSMLTAC strategy demonstrated higher degradation efficiency on membrane target PD-L1 and intracellular target PDEδ than corresponding PROTAC degraders. Taken together, this proof-of-concept provides a convenient and effective strategy for targeted protein degradation.


Subject(s)
Lysosomes , Proteolysis , Lysosomes/metabolism , Humans , Proteolysis/drug effects , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism
2.
J Med Chem ; 67(16): 14155-14174, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39106476

ABSTRACT

Topoisomerase (Top) inhibitors used in clinical cancer treatments are limited because of their toxicity and severe side effects. Noteworthily, Top1/2 dual inhibitors overcome the compensatory effect between Top1 and 2 inhibitors to exhibit stronger antitumor efficacies. In this study, a series of indolo[3,2-c]isoquinoline derivatives were designed as Top1/2 dual inhibitors possessing apparent antiproliferative activities. Mechanistic studies indicated that the optimal compounds 23 and 31 with increasing reactive oxygen species levels damage DNA, inducing both cancer cell apoptosis and cycle arrest. Importantly, the results of the toxicity studies showed that compounds 23 and 31 possessed good oral safety profiles. In xenograft models, compound 23 exhibited remarkable antitumor potency, which was superior to the clinical Top inhibitors irinotecan and etoposide. Overall, this work highlights the therapeutic potential and safety profile of compound 23 as a Top1/2 dual inhibitor in tumor therapy and provides valuable lead compounds for further development of Top inhibitors.


Subject(s)
Antineoplastic Agents , DNA Topoisomerases, Type II , Isoquinolines , Topoisomerase I Inhibitors , Topoisomerase II Inhibitors , Humans , Animals , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/therapeutic use , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Administration, Oral , DNA Topoisomerases, Type II/metabolism , Cell Line, Tumor , Structure-Activity Relationship , Mice , Apoptosis/drug effects , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/metabolism , Drug Screening Assays, Antitumor , Xenograft Model Antitumor Assays , Indoles/pharmacology , Indoles/chemistry , Indoles/therapeutic use , Mice, Nude , Drug Discovery , Reactive Oxygen Species/metabolism
3.
Bioorg Med Chem Lett ; 109: 129838, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838918

ABSTRACT

Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Janus Kinase 1 , Proteolysis , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Proteolysis/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Discovery , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Proteasome Endopeptidase Complex/metabolism
4.
Acta Pharm Sin B ; 14(5): 2228-2246, 2024 May.
Article in English | MEDLINE | ID: mdl-38799646

ABSTRACT

Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist with favorable effects on fatty and glucose metabolism, has been considered the leading candidate drug for nonalcoholic steatohepatitis (NASH) treatment. However, its limited effectiveness in resolving liver fibrosis and lipotoxicity-induced cell death remains a major drawback. Ferroptosis, a newly recognized form of cell death characterized by uncontrolled lipid peroxidation, is involved in the progression of NASH. Nitric oxide (NO) is a versatile biological molecule that can degrade extracellular matrix. In this study, we developed a PEGylated thiolated hollow mesoporous silica nanoparticles (MSN) loaded with OCA, as well as a ferroptosis inhibitor liproxsatin-1 and a NO donor S-nitrosothiol (ONL@MSN). Biochemical analyses, histology, multiplexed flow cytometry, bulk-tissue RNA sequencing, and fecal 16S ribosomal RNA sequencing were utilized to evaluate the effects of the combined nanoparticle (ONL@MSN) in a mouse NASH model. Compared with the OCA-loaded nanoparticles (O@MSN), ONL@MSN not only protected against hepatic steatosis but also greatly ameliorated fibrosis and ferroptosis. ONL@MSN also displayed enhanced therapeutic actions on the maintenance of intrahepatic macrophages/monocytes homeostasis, inhibition of immune response/lipid peroxidation, and correction of microbiota dysbiosis. These findings present a promising synergistic nanotherapeutic strategy for the treatment of NASH by simultaneously targeting FXR, ferroptosis, and fibrosis.

5.
Chemistry ; 30(39): e202401400, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38736421

ABSTRACT

Coumestan represents a biologically relevant structural motif distributed in a number of natural products, and the rapid construction of related derivatives as well as the characterization of targets would accelerate lead compound discovery in medicinal chemistry. In this work, a general and scalable approach to 8,9-dihydroxycoumestans via two-electrode constant current electrolysis was developed. The application of a two-phase (aqueous/organic) system plays a crucial role for success, protecting the sensitive o-benzoquinone intermediates from over-oxidation. Based on the structurally diverse products, a primary SAR study on coumestan scaffold was completed, and compound 3 r exhibited potent antiproliferative activities and a robust topoisomerase I (Top1) inhibitory activity. Further mechanism studies demonstrates that compound 3 r was a novel Top1 poison, which might open an avenue for the development of Top1-targeted antitumor agent.


Subject(s)
Antineoplastic Agents , Coumarins , DNA Topoisomerases, Type I , Topoisomerase I Inhibitors , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemical synthesis , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/chemistry , Humans , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Oxidation-Reduction , Umbelliferones/chemistry , Umbelliferones/pharmacology , Drug Screening Assays, Antitumor
6.
Sci Bull (Beijing) ; 69(11): 1776-1797, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38614856

ABSTRACT

Undruggable targets typically refer to a class of therapeutic targets that are difficult to target through conventional methods or have not yet been targeted, but are of great clinical significance. According to statistics, over 80% of disease-related pathogenic proteins cannot be targeted by current conventional treatment methods. In recent years, with the advancement of basic research and new technologies, the development of various new technologies and mechanisms has brought new perspectives to overcome challenging drug targets. Among them, targeted protein degradation technology is a breakthrough drug development strategy for challenging drug targets. This technology can specifically identify target proteins and directly degrade pathogenic target proteins by utilizing the inherent protein degradation pathways within cells. This new form of drug development includes various types such as proteolysis targeting chimera (PROTAC), molecular glue, lysosome-targeting Chimaera (LYTAC), autophagosome-tethering compound (ATTEC), autophagy-targeting chimera (AUTAC), autophagy-targeting chimera (AUTOTAC), degrader-antibody conjugate (DAC). This article systematically summarizes the application of targeted protein degradation technology in the development of degraders for challenging drug targets. Finally, the article looks forward to the future development direction and application prospects of targeted protein degradation technology.


Subject(s)
Autophagy , Proteolysis , Proteolysis/drug effects , Humans , Autophagy/drug effects , Proteins/metabolism , Lysosomes/metabolism , Drug Development/methods , Molecular Targeted Therapy/methods , Animals
7.
Adv Sci (Weinh) ; 11(25): e2401623, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38639391

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy for targeted protein degradation and drug discovery. To overcome the inherent limitations of conventional PROTACs, an innovative drugtamer-PROTAC conjugation approach is developed to enhance tumor targeting and antitumor potency. Specifically, a smart prodrug is designed by conjugating "drugtamer" to a nicotinamide phosphoribosyltransferase (NAMPT) PROTAC using a tumor microenvironment responsible linker. The "drugtamer" consists of fluorouridine nucleotide and DNA-like oligomer. Compared to NAMPT PROTAC and the combination of PROTAC + fluorouracil, the designed prodrug AS-2F-NP demonstrates superior tumor targeting, efficient cellular uptake, improved in vivo potency and reduced side effects. This study provides a promising strategy for the precise delivery of PROTAC and synergistic antitumor agents.


Subject(s)
Antineoplastic Agents , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Humans , Cell Line, Tumor , Proteolysis/drug effects , Drug Delivery Systems/methods , Prodrugs/pharmacology , Prodrugs/chemistry , Disease Models, Animal , Nicotinamide Phosphoribosyltransferase/metabolism , Tumor Microenvironment/drug effects , Drug Synergism
8.
J Hepatol ; 81(3): 389-403, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38670321

ABSTRACT

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of non-alcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. In this study, we investigated the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in the pathogenesis of NASH. METHODS: Hepatic EFHD2 expression was characterized in patients with NASH and two diet-induced NASH mouse models. Single-cell RNA sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma were assessed. Molecular mechanisms underlying EFHD2 function were investigated, while chemical and genetic investigations were performed to assess its potential as a therapeutic target. RESULTS: EFHD2 expression was significantly elevated in hepatic macrophages/monocytes in both patients with NASH and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related hepatocellular carcinoma. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of IFNγR2 (interferon-γ receptor-2) onto the plasma membrane. This interaction mediates interferon-γ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a novel stapled α-helical peptide targeting EFHD2 was shown to be effective in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Non-alcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all patients with NAFLD progress to NASH. A key challenge is identifying the factors that trigger inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of interferon-γ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings support the potential of EFHD2 as a therapeutic target in NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , Humans , Male , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/etiology , Disease Models, Animal , Ferroptosis/drug effects , Interferon-gamma/metabolism , Liver/metabolism , Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/immunology
9.
J Med Chem ; 67(9): 7373-7384, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38646851

ABSTRACT

Natural product evodiamine is a multitargeting antitumor lead compound. However, clinical development of evodiamine derivatives was hampered by poor water solubility and limited in vivo antitumor potency. Herein, a series of evodiamine-glucose conjugates were designed by additional targeting glucose transporter-1 (GLUT1). Compared with the lead compound, conjugate 8 exhibited obvious enhancement in water solubility and in vivo antitumor efficacy. Furthermore, the effect of GLUT1 targeting also led to lower cytotoxicity to normal cells. Antitumor mechanism studies manifested that conjugate 8 acted by Top1/Top2 dual inhibition, apoptosis induction, and G2/M cell cycle arrest, which selectively targeted tumor cells with a high expression level of GLUT1. Thus, evodiamine-glucose conjugates showed promising features as potential antitumor agents.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Design , Glucose , Quinazolines , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Glucose/metabolism , Apoptosis/drug effects , Mice , Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/metabolism , Structure-Activity Relationship , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Mice, Nude , Mice, Inbred BALB C
10.
J Med Chem ; 67(6): 4726-4738, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38489247

ABSTRACT

Cryptococcus neoformans (C. neoformans) and Candida albicans (C. albicans) are classified as the critical priority groups among the pathogenic fungi, highlighting the urgent need for developing more effective antifungal therapies. On the basis of antifungal natural product sampangine, herein, a series of tricyclic oxime and oxime ether derivatives were designed. Among them, compound WZ-2 showed excellent inhibitory activity against C. neoformans (MIC80 = 0.016 µg/mL) and synergized with fluconazole to treat resistant C. albicans (FICI = 0.078). Interestingly, compound WZ-2 effectively inhibited virulence factors (e.g., capsule, biofilm, and yeast-to-hypha morphological transition), suggesting the potential to overcome drug resistance. In a mouse model of cryptococcal meningitis, compound WZ-2 (5 mg/kg) effectively reduced the brain C. neoformans H99 burden. Furthermore, compound WZ-2 alone and its combination with fluconazole also significantly reduced the kidney burden of the drug-resistant strain (0304103) and sensitive strain (SC5314) of C. albicans.


Subject(s)
Alkaloids , Candidiasis , Cryptococcosis , Cryptococcus neoformans , Heterocyclic Compounds, 4 or More Rings , Naphthyridines , Animals , Mice , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fluconazole/pharmacology , Fluconazole/therapeutic use , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Candidiasis/drug therapy , Candida albicans , Microbial Sensitivity Tests
11.
J Med Chem ; 67(5): 4120-4130, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38367219

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) plays a crucial role in the cellular energy metabolism pathway. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme involved in the biosynthesis of NAD+. Herein, a series of new NAMPT activators were designed to increase the NAD+ levels and improve aging-associated dysfunctions. In particular, compound C8 effectively activated NAMPT and promoted the biosynthesis of NAD+. Furthermore, we demonstrated that NAMPT activator C8 possessed excellent antiaging effects both in vitro and in vivo. Activator C8 showed potent activity in delaying aging in senescent HL-7702 cells and extended the lifespan of Caenorhabditis elegans. In a naturally aging mouse model, compound C8 effectively alleviated age-related dysfunctions and markers. Therefore, NAMPT activator C8 represented a promising lead compound for the treatment of age-related diseases.


Subject(s)
NAD , Nicotinamide Phosphoribosyltransferase , Mice , Animals , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Cytokines/metabolism , Aging
12.
ACS Med Chem Lett ; 15(1): 29-35, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38229750

ABSTRACT

The autophagy-tethering compound (ATTEC) technology has emerged as a promising strategy for targeted protein degradation (TPD). Here, we report the discovery of the first generation of PDEδ autophagic degraders using an ATTEC approach. The most promising compound 12c exhibited potent PDEδ binding affinity and efficiently induced PDEδ degradation in a concentration-dependent manner. Mechanistic studies confirmed that compound 12c reduced the PDEδ protein level through lysosome-mediated autophagy without affecting the PDEδ mRNA expression. Importantly, compound 12c was much more effective in suppressing the growth in KRAS mutant pancreatic cancer cells than the corresponding PDEδ inhibitor. Taken together, this study expands the application scope of the ATTEC approach and highlights the effectiveness of the PDEδ autophagic degradation strategy in antitumor drug discovery.

13.
Angew Chem Int Ed Engl ; 63(12): e202315997, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38282119

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme with diverse biological functions in DNA synthesis. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme involved in NAD+ biosynthesis in mammals. We developed the first chemical tool for optical control of NAMPT and NAD+ in biological systems using photoswitchable proteolysis-targeting chimeras (PS-PROTACs). An NAMPT activator and dimethylpyrazolazobenzene photoswitch were used to design highly efficient PS-PROTACs, enabling up- and down-reversible regulation of NAMPT and NAD+ in a light-dependent manner and reducing the toxicity associated with inhibitor-based PS-PROTACs. PS-PROTAC was activated under 620 nm irradiation, realizing in vivo optical manipulation of antitumor activity, NAMPT, and NAD+ .


Subject(s)
NAD , Nicotinamide Phosphoribosyltransferase , Animals , Mammals , Proteolysis Targeting Chimera
14.
Small ; 20(8): e2306378, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37817359

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) can provide promising opportunities for cancer treatment, while precise regulation of their activities remains challenging to achieve effective and safe therapeutic outcomes. A semiconducting polymer nanoPROTAC (SPNFeP ) is reported that can achieve ultrasound (US) and tumor microenvironment dual-programmable PROTAC activity for deep-tissue sonodynamic-ferroptosis activatable immunotherapy. SPNFeP is formed through a nano-precipitation of a sonodynamic semiconducting polymer, a ferroptosis inducer, and a newly synthesized PROTAC molecule. The semiconducting polymers work as sonosensitizers to produce singlet oxygen (1 O2 ) via sonodynamic effect under US irradiation, and ferroptosis inducers react with intratumoral hydrogen peroxide (H2 O2 ) to generate hydroxyl radical (·OH). Such a dual-programmable reactive oxygen species (ROS) generation not only triggers ferroptosis and immunogenic cell death (ICD), but also induces on-demand activatable delivery of PROTAC molecules into tumor sites. The effectively activated nanoPROTACs degrade nicotinamide phosphoribosyl transferase (NAMPT) to suppress tumor infiltration of myeloid-derived suppressive cells (MDSCs), thus promoting antitumor immunity. In such a way, SPNFeP mediates sonodynamic-ferroptosis activatable immunotherapy for entirely inhibiting tumor growths in both subcutaneous and 2-cm tissue-covered deep tumor mouse models. This study presents a dual-programmable activatable strategy based on PROTACs for effective and precise cancer combinational therapy.


Subject(s)
Ferroptosis , Neoplasms , Animals , Mice , Immunotherapy , Combined Modality Therapy , Neoplasms/therapy , Polymers , Cell Line, Tumor , Tumor Microenvironment
15.
Eur J Med Chem ; 264: 116047, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38118394

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly aggressive and lethal malignancy with poor prognosis, necessitating the urgent development of effective treatments. Targeted photodynamic therapy (PDT) offers a promising way to selectively eradicate tumor cells without affecting normal cells. Inspired by promising features of peptide-drug conjugates (PDCs) in targeted cancer therapy, herein a novel glypican-3 (GPC3)-targeting PDC-PDT strategy was developed for the precise PDT treatment of HCC. The GPC3-targeting photosensitizer conjugates were developed by attaching GPC3-targeting peptides to chlorin e6. Conjugate 8b demonstrated the ability to penetrate HCC cells via GPC3-mediated entry process, exhibiting remarkable tumor-targeting capacity, superior antitumor efficacy, and minimal toxicity towards normal cells. Notably, conjugate 8b achieved complete tumor elimination upon light illumination in a HepG2 xenograft model without harm to normal tissues. Overall, this innovative GPC3-targeting conjugation strategy demonstrates considerable promise for clinical applications for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Photochemotherapy , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Glypicans/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use
16.
J Med Chem ; 66(24): 16694-16703, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38060985

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is essentially involved in many biological processes of cancer cells, yet chemical intervention of NAD biosynthesis failed to obtain an optimal therapeutic benefit. We herein developed a new strategy to induce catastrophic NAD depletion by concurrently impairing NAD synthesis and promoting NAD consumption. We designed a series of new compounds that conjugate an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD salvage pathway, with a DNA-alkylating agent. Among them, compound 11b exhibited potent anticancer efficacy in cancer cell lines and mouse tumor models with intrinsic resistance to the parent compound FK866 or chlorambucil. Compound 11b caused catastrophic NAD depletion via a synergistic effect between the NAD salvage pathway blockade and DNA damage-triggered NAD consumption. Our findings suggest a new intervention strategy for causing catastrophic NAD depletion in cancer cells and provide basis for the development of new inhibitors targeting NAD metabolism.


Subject(s)
NAD , Neoplasms , Animals , Mice , NAD/metabolism , Cytokines/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Neoplasms/drug therapy , Cell Line, Tumor
17.
J Med Chem ; 66(24): 16828-16842, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38055861

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) have recently emerged as a promising technology for drug development. However, poor water solubility, limited tissue selectivity, and inadequate tumor penetration pose significant challenges for PROTAC-based therapies in cancer treatment. Herein, we developed an iRGD-PROTAC conjugation strategy utilizing tumor-penetrating cyclic peptide iRGD (CRGDK/RGPD/EC) to deliver PROTACs deep into breast cancer tissues. As a conceptual validation study, iRGD peptides were conjugated with a bromodomain-containing protein 4 (BRD4) PROTAC through a GSH-responsive linker. The resulting iRGD-PROTAC conjugate iPR showed enhanced water solubility, tumor-targeting capability, and penetration within tumor tissues, resulting in increased antibreast cancer efficacy in animal models and patient-derived organoids. This study demonstrates the advantages of combining iRGD and PROTACs in improving drug delivery and highlights the importance of tissue selectivity and penetration ability in PROTAC-based therapeutics.


Subject(s)
Breast Neoplasms , Animals , Humans , Female , Breast Neoplasms/drug therapy , Proteolysis , Proteolysis Targeting Chimera , Nuclear Proteins , Cell Line, Tumor , Transcription Factors , Water , Bromodomain Containing Proteins , Cell Cycle Proteins
18.
J Adv Res ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37913903

ABSTRACT

INTRODUCTION: Natural products (NPs) play a crucial role in the development of therapeutic drugs. However, it is still highly challenging to identify the targets of NPs. Besides, NPs usually exert their pharmacological activities via acting on multiple targets or pathways, which also poses great difficulties for the target identification of NPs. OBJECTIVES: Inspired by our continuous efforts in designing drug-like protein degraders, this study introduced a successful example for the target identification and drug discovery of natural products evodiamine by employing PROTAC technology. METHODS: Taking advantages of proteolysis targeting chimera (PROTAC), herein an integrated strategy combining PROTAC derivatization, quantitative proteomic analysis and binding affinity validation was developed for target identification and drug discovery of antitumor NP evodiamine. RESULTS: In this study, both highly potent PROTACs and negative controls were designed for quantitative proteomic analysis. Furthermore, REXO4 was confirmed as a direct target of 3-fluoro-10-hydroxylevodiamine, which induced cell death through ROS. In addition, the PROTAC 13c effectively degraded REXO4 both in vitro and in vivo, leading to potent antitumor activities and reduced toxic side effects. CONCLUSION: In summary, we developed an integrated strategy for the target identification and drug discovery of NPs, which was successfully applied to the PROTAC derivatization and target characterization of evodiamine. This proof-of-concept study highlighted the superiority of PROTAC technology in target identification of NPs and accelerated the process of NPs-based drug discovery, exhibiting broad application in NP-based drug development.

19.
J Med Chem ; 66(23): 15699-15714, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37983010

ABSTRACT

Recent studies revealed that intestinal microbiota played important roles in colorectal cancer (CRC) carcinogenesis. Particularly, Fusobacterium nucleatum was confirmed to promote the proliferation and metastasis of CRC. Therefore, targeting F. nucleatum may be a potential preventive and therapeutic approach for CRC. Herein, 2,272 off-patent drugs were screened inhibitory activity against F. nucleatum. Among the hits, nitisinone was identified as a promising anti-F. nucleatum lead compound. Further optimization of nitisinone led to the discovery of more potent derivatives. Particularly, compounds 19q and 22c showed potent anti-F. nucleatum activity (MIC50 = 1 and 2 µg/mL, respectively) with low cytotoxicity. Among them, compound 19q effectively attenuated the migratory ability of MC-38 cells induced by F. nucleatum. Preliminary mechanism studies suggested that nitisinone and its derivatives might act by downregulating nitroreductase and tryptophanase. Thus, the development of small molecule F. nucleatum inhibitors represents an effective strategy to treat CRC.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , Fusobacterium nucleatum/physiology , Colorectal Neoplasms/pathology , Tryptophanase , Drug Repositioning , Colonic Neoplasms/drug therapy
20.
J Med Chem ; 66(20): 14221-14240, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37820326

ABSTRACT

Invasive fungal infections (IFIs) such as cryptococcal meningitis (CM) remain a serious health issue worldwide due to drug resistance closely related to biofilm formation. Unfortunately, available antifungal drugs with ideal safety and promising potency are still lacking; thus, the research of new candidate and therapeutic approach is urgently needed. As an important gas messenger molecule, nitric oxide (NO) shows vital inhibition on various microorganism biofilms. Hence, three series of novel NO-donating azole derivatives were designed and synthesized, and the in vitro antifungal activity as well as the mechanism of action was investigated. Among them, 3a and 3e displayed excellent antifungal activity against Cryptococcus neoformans and biofilm depending on the release of NO. Moreover, a more stable analogue 3h of 3a demonstrated markedly anti-CM effects via intranasal dropping, avoiding the first-pass effects and possessing a better brain permeability bypass blood-brain barrier. These results present a promising antifungal candidate and intranasal dropping approach for the treatment of CM, warranting further studies.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Meningitis, Cryptococcal , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/therapeutic use , Azoles/pharmacology , Cryptococcosis/drug therapy , Meningitis, Cryptococcal/drug therapy , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL