Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
Eur J Pharmacol ; 929: 175125, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35835603

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article " … the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated", the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.

3.
Eur J Pharmacol ; 854: 28-38, 2019 07 05.
Article in English | MEDLINE | ID: mdl-30953616

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article "… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated", the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.


Subject(s)
Down-Regulation/drug effects , Iridoids/pharmacology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , RNA, Long Noncoding/genetics , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Line , Cytoprotection/drug effects , Gene Silencing , Heart/drug effects , Heart/physiopathology , Janus Kinase 1/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism , Rats , STAT3 Transcription Factor/metabolism
4.
Inflammation ; 41(4): 1229-1237, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29611016

ABSTRACT

Myocarditis is a cardiomyopathy associated with inflammatory response. It has been reported that geniposide (GEN), a traditional Chinese herb extract from Gardenia jasminoides Ellis, possesses an anti-inflammatory effect and a protective effect on cardiomyocytes. The present study aimed to explore the protective role of GEN and the underlying mechanism in LPS-injured H9c2 cells. H9c2 cells were treated with LPS to induce cell injury and then we investigated the effect of GEN. miR-145 expression was inhibited by transfection with miR-145 inhibitor and its expression was measured by RT-PCR. Cell viability and apoptotic cells were measured by CCK-8 assay and flow cytometry analysis. The levels of pro-inflammatory factors (IL-6, TNF-α, and MCP-1) were assessed by western blot and RT-PCR. Western blot was performed to detect the expression of the MEK/ERK pathway-related factors. LPS exposure reduced cell viability, increased apoptotic cells, and promoted the expression of pro-inflammatory factors in H9c2 cells. However, GEN pretreatment significantly reduced LPS-induced cell injury, as increased cell viability, reduced apoptotic cells, and inhibited the expression of pro-inflammatory factors. Moreover, we found that miR-145 expression was down-regulated by LPS exposure but was up-regulated by GEN pretreatment. The protective effect of GEN on LPS-injured H9c2 cells was blocked by miR-145 inhibitor. In addition, GEN inhibited the MEK/ERK pathway through up-regulating miR-145. Our results suggested that GEN exerted a protective role in LPS-injured H9c2 cells. The GEN-associated regulation might be related to its regulation on miR-145 and the MEK/ERK signaling pathway.


Subject(s)
Iridoids/pharmacology , MicroRNAs/genetics , Myocytes, Cardiac/pathology , Animals , Cell Line , Cell Survival/drug effects , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System , Rats , Up-Regulation/drug effects
5.
J Cell Biochem ; 119(2): 1804-1818, 2018 02.
Article in English | MEDLINE | ID: mdl-28796407

ABSTRACT

This study aimed to explore effects of CNP on ventricular remodeling following myocardial ischemia-reperfusion (I/R) injury through the NPRB/cGMP signaling pathway. Rat cardiomyocytes were assigned into: control, I/R, I/R + CNP, and I/R + 8-Br-cGMP groups. ELISA, qRT-PCR, and Western blotting were used to detect cGMP content and expression, respectively. After model establishment of I/R rats, normal control, CNP-/- control, I/R, and CNP-/- groups were set. Indexes of heart were detected using echocardiography and hemodynamics. ELISA was used to measure serum CNP, cGMP, LDH, cTn I, CK-MB, TNF-α, and IL-6 levels. Myocardial infarct was identified by TTC staining, and apoptosis conditions by TUNEL staining. QRT-PCR and Western blotting were adopted to detect expressions of CNP, NPRB, cGMP, and apoptosis-related genes. Compared with control group, cGMP contents and expression in the I/R, I/R + CNP and I/R + 8-Br-cGMP groups were decreased. Levels of LVEDV, LVESV, LVDS, LVDD, IVSD, LVM, LVEDP, and LVSP were higher in the I/R, CNP-/- control, and CNP-/- groups than normal control group while LVEF, SV, CO, and ±dp/dtmax were lower. Compared with the normal control group, LDH, cTn I, CK-MB, TNF-α, and IL-6 were higher in the I/R, CNP-/- control and CNP-/- groups; pathological changes and myocardial infarction were observed in the I/R, CNP-/- control, and CNP-/- groups; expressions of apoptosis-related genes in those groups were higher; while CNP, NPRB, cGMP, and Bcl-2 expressions were decreased. We came to the conclusion that gene knockdown of CNP blocks the NPRB/cGMP signaling pathway, thereby aggravating myocardial I/R injury and causing ventricular remodeling in rats.


Subject(s)
2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , Cyclic GMP/metabolism , Myocardial Reperfusion Injury/physiopathology , Receptors, Atrial Natriuretic Factor/metabolism , Ventricular Remodeling , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Disease Models, Animal , Gene Knockdown Techniques , Male , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL