Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Ayurveda Integr Med ; 14(2): 100692, 2023.
Article in English | MEDLINE | ID: mdl-37018893

ABSTRACT

BACKGROUND: The Indian traditional medicinal system, Ayurveda, describes several lifestyle practices, processes and medicines as an intervention to treat asthma. Rasayana therapy is one of them and although these treatment modules show improvement in bronchial asthma, their mechanism of action, particularly the effect on DNA methylation, is largely understudied. OBJECTIVES: Our study aimed at identifying the contribution of DNA methylation changes in modulating bronchial asthma phenotype upon Ayurveda intervention. MATERIALS AND METHODS: In this study, genome-wide methylation profiling in peripheral blood DNA of healthy controls and bronchial asthmatics before (BT) and after (AT) Ayurveda treatment was performed using array-based profiling of reference-independent methylation status (aPRIMES) coupled to microarray technique. RESULTS: We identified 4820 treatment-associated DNA methylation signatures (TADS) and 11,643 asthma-associated DNA methylation signatures (AADS), differentially methylated [FDR (≤0.1) adjusted p-values] in AT and HC groups respectively, compared to BT group. Neurotrophin TRK receptor signaling pathway was significantly enriched for differentially methylated genes in bronchial asthmatics, compared to AT and HC subjects. Additionally, we identified over 100 differentially methylated immune-related genes located in the promoter/5'-UTR regions of TADS and AADS. Various immediate-early response and immune regulatory genes with functions such as transcription factor activity (FOXD1, FOXD2, GATA6, HOXA3, HOXA5, MZF1, NFATC1, NKX2-2, NKX2-3, RUNX1, KLF11), G-protein coupled receptor activity (CXCR4, PTGER4), G-protein coupled receptor binding (UCN), DNA binding (JARID2, EBF2, SOX9), SNARE binding (CAPN10), transmembrane signaling receptor activity (GP1BB), integrin binding (ITGA6), calcium ion binding (PCDHGA12), actin binding (TRPM7, PANX1, TPM1), receptor tyrosine kinase binding (PIK3R2), receptor activity (GDNF), histone methyltransferase activity (MLL5), and catalytic activity (TSTA3) were found to show consistent methylation status between AT and HC group in microarray data. CONCLUSIONS: Our study reports the DNA methylation-regulated genes in bronchial asthmatics showing improvement in symptoms after Ayurveda intervention. DNA methylation regulation in the identified genes and pathways represents the Ayurveda intervention responsive genes and may be further explored as diagnostic, prognostic, and therapeutic biomarkers for bronchial asthma in peripheral blood.

2.
Article in English | MEDLINE | ID: mdl-32152077

ABSTRACT

Fluoroquinolones are reported to possess immunomodulatory activity; hence, a novel benzoquinolizine fluoroquinolone, levonadifloxacin, was evaluated in lipopolysaccharide-stimulated human whole-blood (HWB) and mouse acute lung injury (ALI) models. Levonadifloxacin significantly mitigated the inflammatory responses in an HWB assay through inhibition of proinflammatory cytokines and in the ALI model by lowering lung total white blood cell count, myeloperoxidase, and cytokine levels. The immunomodulatory effect of levonadifloxacin, along with promising antibacterial activity, is expected to provide clinical benefits in the treatment of infections.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines/blood , Immunomodulation/drug effects , Quinolizines/pharmacology , Quinolones/pharmacology , Acute Lung Injury/microbiology , Animals , Bacteria/drug effects , Disease Models, Animal , Humans , Immunologic Factors/pharmacology , Inflammation/drug therapy , Leukocyte Count , Lipopolysaccharides/toxicity , Mice , Microbial Sensitivity Tests , Peroxidase/blood
3.
Eur J Clin Pharmacol ; 74(5): 561-569, 2018 May.
Article in English | MEDLINE | ID: mdl-29511780

ABSTRACT

PURPOSE: Sitagliptin, a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes, is reported to be more efficacious in Indian patients than non-Indian patient population. The objective of the study was to evaluate pharmacokinetic and pharmacodynamic (PK/PD) parameters of single-dose sitagliptin 100 mg (Januvia) in healthy Indian male participants. METHOD: In a randomised, single-dose, open-label, three-treatment, three-period, three-sequence, crossover bioavailability study, 18 healthy male participants received single-dose of sitagliptin under fasted and fed conditions. PK parameters (Cmax, Tmax, AUC0-∞ and t1/2) were determined using Phoenix WinNonlin software. PD parameters [DPP-IV inhibition, active glucagon-like peptide-1 (GLP-1) and insulin] were determined using established methods. RESULTS: PK parameters expressed in mean (SD) were Cmax 491.7 (135.9) ng/mL; AUC0-∞ 4256.1 (509.9) ng· hr/mL, Tmax 2.9 (1.0) hr and t1/2 10.4 (3.0) hr. The weighted average (WA) plasma DPP-4 inhibition over 24 h was 89.6% and WA of plasma active GLP-1 over 2 h after standardised meal (geometric mean ratio) was 11.1 (9.9) pM/L which is two- to- four fold higher compared to that reported in other populations. The mean average (SD) AUC of plasma insulin over 2 h of standardised meal was 47.9 (24.9) µIU/mL. CONCLUSION: Although, there are differences in pharmacokinetic parameters, no clinically meaningful differences were observed with respect to DPP-IV inhibition between Indian and non-Indian population.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/pharmacokinetics , Adolescent , Adult , Cross-Over Studies , Dipeptidyl Peptidase 4/blood , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/blood , Fasting/metabolism , Glucagon-Like Peptide 1/blood , Healthy Volunteers , Humans , Insulin/blood , Male , Sitagliptin Phosphate/adverse effects , Sitagliptin Phosphate/blood , White People , Young Adult
4.
J Ayurveda Integr Med ; 9(1): 45-52, 2018.
Article in English | MEDLINE | ID: mdl-29249636

ABSTRACT

BACKGROUND: Arjunarishta (AA), a formulation used as cardiotonic is a hydroalcoholic formulation of Terminalia arjuna (Roxb.) Wight and Arn. (TA) belonging to family Combretaceae. OBJECTIVE: To evaluate the anti-hyperglycemic and anti-hyperlipidemic effect of Arjunarishta on high-fat diet fed animals. MATERIALS AND METHODS: High-fat diet fed (HFD) Wistar rats were randomly divided into three groups and treated with phytochemically standardized Arjunarishta (1.8 ml/kg), and hydroalcoholic extract of T. arjuna (TAHA) (250 mg/kg) and rosuvastatin (10 mg/kg), for 3 months. Intraperitoneal glucose tolerance test, blood biochemistry, liver triglyceride and systolic blood pressure were performed in all the groups. Effect of these drugs on the expression of tumor necrosis factor-α (TNF-α) and insulin receptor substrate-1 (IRS-1) and peroxisome proliferators activated receptor γ coactivator 1-α (PGC-1α) were studied in liver tissue using Quantitative Real-time PCR. RESULTS: HFD increased fasting blood glucose, liver triglyceride, systolic blood pressure and gene expression of TNF-α, IRS-1 and PGC-1α. Treatment of AA and TAHA significantly reduced fasting blood glucose, systolic blood pressure, total cholesterol and triglyceride levels. These treatments significantly decreased gene expression of TNF-α (2.4, 2.2 and 2.6 fold change); increased IRS-1 (2.8, 2.9 and 2.8 fold change) and PGC-1α (2.9, 3.7 and 3.3 fold change) as compared to untreated HFD. CONCLUSION: Anti-hyperglycemic, anti-hyperlipidemic effect of Arjunarishta may be mediated by decreased TNF-α and increased PGC-1α and IRS-1.

5.
J Ethnopharmacol ; 197: 110-117, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-27473604

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Over the past few decades, there have been significant scientific advances leading to improved understanding of asthma as a disease and treatment providing immediate relief. However, prevention of recurrent attacks, exacerbations and disease cure remains a challenge. Ayurveda refers to bronchial asthma as Tamaka Swasa and it is well explained in Charaka Samhita. Management of asthma in Ayurveda includes removal of vitiated Kapha through Shodhana, Shamana procedures, herbal and herbomineral formulations in addition to advising a healthy lifestyle and diet. Several clinical trials on Ayurvedic formulations for treatment of asthma are reported, however, whole system management of asthma has rarely been studied in the manner in which it is actually being practiced. Ayurveda therapeutics provides Dosha specific approaches, which needs biological investigation. AIM OF THE STUDY: The objective of our study was to investigate lung functions and cytokine changes in Asthmatic individuals in response to Ayurvedic intervention. METHODS: The study design was approved by the Institutional Ethics Committee of Tilak Ayurveda Mahavidyalaya (TAMV) & Sheth Tarachand Ramnath Charitable Ayurveda Hospital and followed guidelines of the Declaration of Helsinki and Tokyo for humans. It was conducted as a whole system individualized pragmatic clinical trial and written consent of patients was collected before enrollment. One hundred and fifteen patients with mild-to-moderate asthma were divided into 2 sub-groups depending on their disease subsets and administered phenotype specific ayurvedic interventions. Seventy six asthma patients completed the treatment. Serum IgE levels, blood eosinophil counts, spirometry and blood cytokine levels were measured before the start of treatment and six months at the end of treatment. Age and sex matched healthy participants (n=69) were recruited in the study for comparison of cytokines levels. RESULTS: Significant improvements in FEV1(% predicted) (p<0.0001) and FVC (% predicted) (p=0.0001) was observed in asthmatic patients who underwent Ayurvedic treatment. Circulating levels of IgE (p<0.03) and eosinophil numbers (p=0.001) reduced significantly in the asthmatics after Ayurvedic treatment. This was associated with significant reduction in levels of circulating cytokines. Levels of Th2, Th1 and inflammatory cytokines in the peripheral blood were higher than healthy control participants at baseline (p values <0.0001) and reduced significantly after ayurvedic intervention. CONCLUSION: This proof of concept study highlights the potential benefits and possible mechanism of Ayurvedic interventions in patients with mild-to-moderate asthma. The interventions significantly reduced IgE and eosinophil count, also improved lung function and reduced levels of circulating Th2 cytokines.


Subject(s)
Asthma/drug therapy , Cytokines/blood , Plant Preparations/therapeutic use , Adult , Diet , Eosinophils/drug effects , Female , Healthy Lifestyle , Humans , Immunoglobulin E/blood , Leukocyte Count/methods , Lung/drug effects , Male , Medicine, Ayurvedic , Phenotype , Plants, Medicinal/chemistry
6.
Bioorg Chem ; 69: 102-120, 2016 12.
Article in English | MEDLINE | ID: mdl-27750057

ABSTRACT

A series of novel hybrids comprising of 1,3,4-oxadiazole/thiadiazole and 1,2,4-triazole tethered to 5,6-diphenyl-1,2,4-triazin-3(2H)-one were designed, synthesised and evaluated as COX-2 inhibitors for the treatment of inflammation. The synthesised hybrids were characterised using FT-IR, 1H NMR, 13C NMR, elemental (C,H,N) analyses and assessed for their anti-inflammatory potential by in vitro albumin denaturation assay. Compounds exhibiting activity comparable to indomethacin and celecoxib were further evaluated for in vivo anti-inflammatory activity. Oral administration of promising compounds 3c-3e and 4c-4e did not evoke significant gastric, hepatic and renal toxicity in rats. These potential compounds exhibited reduced malondialdehyde (MDA) content on the gastric mucosa suggesting their protective effects by inhibition of lipid peroxidation. Based on the outcome of in vitro COX assay, compounds 3c-3e and 4c-4e (IC50 0.60-1.11µM) elicited an interesting profile as competitive selective COX-2 inhibitors. Further, selected compounds 3e and 4c were found devoid of cardiotoxicity post evaluation on myocardial infarcted rats. The in silico binding mode of the potential compounds into the COX-2 active site through docking and molecular dynamics exemplified their consensual interaction and subsequent COX-2 inhibition with significant implications for structure-based drug design.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Drug Design , Edema/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacology , Triazines/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Edema/chemically induced , Female , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Male , Mice , Models, Molecular , Molecular Structure , Rats , Rats, Wistar , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry , Ulcer/chemically induced , Ulcer/drug therapy
7.
Eur J Med Chem ; 101: 81-95, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26117820

ABSTRACT

A series of triazin-3(2H)-one derivatives bearing 1,3,4-oxadiazole (4a-4o) were synthesized, characterized and evaluated for anti-inflammatory and analgesic activities. Preliminary in vitro anti-inflammatory activity was assessed using an albumin denaturation assay. The promising compounds were further evaluated in acute, sub-chronic and chronic animal models of inflammation. Derivatives 4d, 4e, 4g, 4j and 4l exhibited significant anti-inflammatory activity with reduced ulcerogenic, hepatotoxic and renotoxic liabilities compared to standard indomethacin. These potential derivatives were also evaluated for in vivo analgesic activity using a writhing model and the formalin-induced paw licking response in mice. Compounds 4d, 4e and 4g exhibited comparable analgesic activity, whereas 4j and 4l yielded moderate effects. The specificity of compounds 4d, 4e, 4g, 4j, and 4l to inhibit (cyclooxygenase-1) COX-1 and (cyclooxygenase-2) COX-2 isozymes and their kinetics were also determined via an in vitro COX inhibition assay. In silico docking studies were performed using a molecular dynamics simulation of the most active compound 4d (COX-2 IC50: 3.07 µM) at the COX-2 active site. The outcome of this exercise helped to verify the consensual interaction of these compounds with the enzyme.


Subject(s)
Analgesics/chemical synthesis , Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Molecular Dynamics Simulation , Oxadiazoles/chemistry , Triazines/pharmacology , Analgesics/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Behavior, Animal/drug effects , Carrageenan , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/drug therapy , Formaldehyde , Kinetics , Mice , Molecular Structure , Oxadiazoles/pharmacology , Pain/chemically induced , Pain/drug therapy , Rats , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...