Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 602: 120621, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33892057

ABSTRACT

The introduction of combination antiretroviral therapy (cART) led to substantial improvement in mortality and morbidity of HIV-1 infection. However, the poor penetration of antiretroviral agents to HIV-1 reservoirs limit the ability of the antiretroviral agents to eliminate the virus. Mesenteric lymph nodes (MLNs) are one of the main HIV-1 reservoirs in patients under suppressive cART. Intestinal lymphatic absorption pathway substantially increases the concentration of lipophilic drugs in mesenteric lymph and MLNs when they are co-administered with long-chain triglyceride (LCT). Chylomicrons (CM) play a crucial role in the intestinal lymphatic absorption as they transport drugs to the lymph lacteals rather than blood capillary by forming CM-drug complexes in the enterocytes. Thus, lipophilic antiretroviral drugs could potentially be delivered to HIV-1 reservoirs in MLNs by LCT-based formulation approach. In this study, protease inhibitors (PIs) were initially screened for their potential for intestinal lymphatic targeting using a computational model. The candidates were further assessed for their experimental affinity to CM. Tipranavir (TPV) was the only-candidate with substantial affinity to both artificial and natural CM in vitro and ex vivo. Pharmacokinetics and biodistribution studies were then performed to evaluate the oral bioavailability and intestinal lymphatic targeting of TPV in rats. The results showed similar oral bioavailability of TPV with and without co-administration of LCT vehicle. Although LCT-based formulation led to 3-fold higher concentrations of TPV in mesenteric lymph compared to plasma, the levels of the drug in MLNs were similar to plasma in both LCT-based and lipid-free formulation groups. Thus, LCT-based formulation approach alone was not sufficient for effective delivery of TPV to MLNs. Future efforts should be directed to a combined highly lipophilic prodrugs/lipid-based formulation approach to target TPV, other PIs and potentially other classes of antiretroviral agents to viral reservoirs within the mesenteric lymphatic system.


Subject(s)
HIV-1 , Administration, Oral , Animals , Humans , Lymph Nodes/metabolism , Pyridines , Pyrones , Rats , Sulfonamides , Tissue Distribution , Triglycerides
2.
J Control Release ; 329: 1077-1089, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33091528

ABSTRACT

The combined antiretroviral therapy (cART) can efficiently suppress HIV replication, but the cessation of cART usually results in viral rebound, mostly due to the presence of viral reservoirs. The mesenteric lymphatic system, including mesenteric lymph nodes (MLNs), is an important viral reservoir into which antiretroviral drugs poorly penetrate. In this work, we proposed a novel lipophilic ester prodrug approach, combined with oral lipid-based formulation, to efficiently deliver lopinavir (LPV) to the mesenteric lymph and MLNs. A series of prodrugs was designed using an in-silico model for prediction of affinity to chylomicrons (CMs), and then synthesized. The potential for mesenteric lymphatic targeting and bioconversion to LPV in physiologically relevant media was assessed in vitro and ex vivo. Subsequently, LPV and selected prodrug candidates were evaluated for their in vivo pharmacokinetics and biodistribution in rats. Oral co-administration of lipids alone could not facilitate the delivery of unmodified LPV to the mesenteric lymphatic system and resulted in undetectable levels of LPV in these tissues. However, a combination of the lipophilic prodrug approach with lipid-based formulation resulted in efficient targeting of LPV to HIV reservoirs in mesenteric lymph and MLNs. The maximum levels of LPV in mesenteric lymph were 1.6- and 16.9-fold higher than protein binding-adjusted IC90 (PA-IC90) of LPV for HIV-1 (140 ng/mL) following oral administration of simple alkyl ester prodrug and activated ester prodrug, respectively. Moreover, the concentrations of LPV in MLNs were 1.1- and 7.2-fold higher than PA-IC90 following administration of simple alkyl ester prodrug and activated ester prodrug, respectively. Furthermore, the bioavailability of LPV was also substantially increased following oral administration of activated ester prodrug compared to unmodified LPV. This approach, especially if can be translated to other antiretroviral drugs, has potential for reducing the size of HIV reservoirs within the mesenteric lymphatic system.


Subject(s)
HIV Infections , Prodrugs , Animals , Esters , HIV Infections/drug therapy , Lopinavir , Lymphatic System , Rats , Ritonavir , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...