Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 17(1): 57, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27184162

ABSTRACT

BACKGROUND: The potential for adverse respiratory effects following exposure to electronic (e-) cigarette liquid (e-liquid) flavorings remains largely unexplored. Given the multitude of flavor permutations on the market, identification of those flavor constituents that negatively impact the respiratory tract is a daunting task. In this study we examined the impact of common e-liquid flavoring chemicals on the airway epithelium, the cellular monolayer that provides the first line of defense against inhaled particulates, pathogens, and toxicants. METHODS: We used the xCELLigence real-time cell analyzer (RTCA) as a primary high-capacity screening tool to assess cytotoxicity thresholds and physiological effects of common e-liquid flavoring chemicals on immortalized human bronchial epithelial cells (16HBE14o-). The RTCA was used secondarily to assess the capability of 16HBE14o- cells to respond to cellular signaling agonists following a 24 h exposure to select flavoring chemicals. Finally, we conducted biophysical measurements of well-differentiated primary mouse tracheal epithelial (MTE) cells with an Ussing chamber to measure the effects of e-cigarette flavoring constituents on barrier function and ion conductance. RESULTS: In our high-capacity screens five of the seven flavoring chemicals displayed changes in cellular impedance consistent with cell death at concentrations found in e-liquid. Vanillin and the chocolate flavoring 2,5-dimethylpyrazine caused alterations in cellular physiology indicative of a cellular signaling event. At subcytotoxic levels, 24 h exposure to 2,5-dimethylpyrazine compromised the ability of airway epithelial cells to respond to signaling agonists important in salt and water balance at the airway surface. Biophysical measurements of 2,5-dimethylpyrazine on primary MTE cells revealed alterations in ion conductance consistent with an efflux at the apical airway surface that was accompanied by a transient loss in transepithelial resistance. Mechanistic studies confirmed that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. CONCLUSIONS: Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.


Subject(s)
Bronchi/drug effects , Chocolate , Electronic Nicotine Delivery Systems , Epithelial Cells/drug effects , Flavoring Agents/toxicity , Pyrazines/toxicity , Vaping/adverse effects , Animals , Bronchi/metabolism , Bronchi/pathology , Cell Line , Cell Survival/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dose-Response Relationship, Drug , Electric Conductivity , Epithelial Cells/metabolism , Epithelial Cells/pathology , High-Throughput Screening Assays , Humans , Mice, Inbred C57BL , Permeability , Signal Transduction/drug effects , Time Factors
2.
Br J Pharmacol ; 172(18): 4535-4545, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26140338

ABSTRACT

BACKGROUND AND PURPOSE: Proteinase-activated receptor-2 (PAR2) is a GPCR linked to diverse pathologies, including acute and chronic pain. PAR2 is one of the four PARs that are activated by proteolytic cleavage of the extracellular amino terminus, resulting in an exposed, tethered peptide agonist. Several peptide and peptidomimetic agonists, with high potency and efficacy, have been developed to probe the functions of PAR2, in vitro and in vivo. However, few similarly potent and effective antagonists have been described. EXPERIMENTAL APPROACH: We modified the peptidomimetic PAR2 agonist, 2-furoyl-LIGRLO-NH2 , to create a novel PAR2 peptidomimetic ligand, C391. C391 was evaluated for PAR2 agonist/antagonist activity to PAR2 across Gq signalling pathways using the naturally expressing PAR2 cell line 16HBE14o-. For antagonist studies, a highly potent and specific peptidomimetic agonist (2-aminothiazo-4-yl-LIGRL-NH2 ) and proteinase agonist (trypsin) were used to activate PAR2. C391 was also evaluated in vivo for reduction of thermal hyperalgesia, mediated by mast cell degranulation, in mice. KEY RESULTS: C391 is a potent and specific peptidomimetic antagonist, blocking multiple signalling pathways (Gq -dependent Ca2+ , MAPK) induced following peptidomimetic or proteinase activation of human PAR2. In a PAR2-dependent behavioural assay in mice, C391 dose-dependently (75 µg maximum effect) blocked the thermal hyperalgesia, mediated by mast cell degranulation. CONCLUSIONS AND IMPLICATIONS: C391 is the first low MW antagonist to block both PAR2 Ca2+ and MAPK signalling pathways activated by peptidomimetics and/or proteinase activation. C391 represents a new molecular structure for PAR2 antagonism and can serve as a basis for further development for this important therapeutic target.

3.
Am J Physiol Cell Physiol ; 307(8): C718-26, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25143347

ABSTRACT

The airway epithelium provides a barrier that separates inhaled air and its various particulates from the underlying tissues. It provides key physiological functions in both sensing the environment and initiating appropriate innate immune defenses to protect the lung. Protease-activated receptor-2 (PAR2) is expressed both apically and basolaterally throughout the airway epithelium. One consequence of basolateral PAR2 activation is the rapid, Ca(2+)-dependent ion flux that favors secretion in the normally absorptive airway epithelium. However, roles for apically expressed PAR2 activation have not been demonstrated, in part due to the lack of specific, high-potency PAR2 ligands. In the present study, we used the newly developed PAR2 ligand 2at-LIGRLO(PEG3-Pam)-NH2 in combination with well-differentiated, primary cultured airway epithelial cells from wild-type and PAR2 (-/-) mice to examine the physiological role of PAR2 in the conducting airway after apical activation. Using digital imaging microscopy of intracellular Ca(2+) concentration changes, we verified ligand potency on PAR2 in primary cultured airway cells. Examination of airway epithelial tissue in an Ussing chamber showed that apical activation of PAR2 by 2at-LIGRLO(PEG3-Pam)-NH2 resulted in a transient decrease in transepithelial resistance that was due to increased apical ion efflux. We determined pharmacologically that this increase in ion conductance was through Ca(2+)-activated Cl(-) and large-conductance K(+) channels that were blocked with a Ca(2+)-activated Cl(-) channel inhibitor and clotrimazole, respectively. Stimulation of Cl(-) efflux via PAR2 activation at the airway epithelial surface can increase airway surface liquid that would aid in clearing the airway of noxious inhaled agents.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Chloride Channels/metabolism , Palmitates/pharmacology , Potassium Channels, Calcium-Activated/metabolism , Receptor, PAR-2/agonists , Animals , Calcium Signaling , Cells, Cultured , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Ion Channel Gating , Membrane Potentials/drug effects , Mice, Inbred C57BL , Ornithine/analogs & derivatives , Ornithine/pharmacology , Receptor, PAR-2/metabolism , Respiratory Mucosa/cytology , Trachea/cytology
4.
PLoS One ; 9(6): e99140, 2014.
Article in English | MEDLINE | ID: mdl-24927179

ABSTRACT

Protease-activated receptor-2 (PAR2) is a G-Protein Coupled Receptor (GPCR) activated by proteolytic cleavage to expose an attached, tethered ligand (SLIGRL). We evaluated the ability for lipid-tethered-peptidomimetics to activate PAR2 with in vitro physiological and Ca2+ signaling assays to determine minimal components necessary for potent, specific and full PAR2 activation. A known PAR2 activating compound containing a hexadecyl (Hdc) lipid via three polyethylene glycol (PEG) linkers (2at-LIGRL-PEG3-Hdc) provided a potent agonist starting point (physiological EC50 = 1.4 nM; 95% CI: 1.2-2.3 nM). In a set of truncated analogs, 2at-LIGR-PEG3-Hdc retained potency (EC50 = 2.1 nM; 1.3-3.4 nM) with improved selectivity for PAR2 over Mas1 related G-protein coupled receptor type C11, a GPCR that can be activated by the PAR2 peptide agonist, SLIGRL-NH2. 2at-LIG-PEG3-Hdc was the smallest full PAR2 agonist, albeit with a reduced EC50 (46 nM; 20-100 nM). 2at-LI-PEG3-Hdc retained specific activity for PAR2 with reduced EC50 (310 nM; 260-360 nM) but displayed partial PAR2 activation in both physiological and Ca2+ signaling assays. Further truncation (2at-L-PEG3-Hdc and 2at-PEG3-Hdc) eliminated in vitro activity. When used in vivo, full and partial PAR2 in vitro agonists evoked mechanical hypersensitivity at a 15 pmole dose while 2at-L-PEG3-Hdc lacked efficacy. Minimum peptidomimetic PAR2 agonists were developed with known heterocycle substitutes for Ser1 (isoxazole or aminothiazoyl) and cyclohexylalanine (Cha) as a substitute for Leu2. Both heterocycle-tetrapeptide and heterocycle-dipeptides displayed PAR2 specificity, however, only the heterocycle-tetrapeptides displayed full PAR2 agonism. Using the lipid-tethered-peptidomimetic approach we have developed novel structure activity relationships for PAR2 that allows for selective probing of PAR2 function across a broad range of physiological systems.


Subject(s)
Calcium Signaling/drug effects , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Receptor, PAR-2/agonists , Receptor, PAR-2/genetics , Animals , CHO Cells , Cells, Cultured , Cricetulus , Male , Mice , Mice, Inbred ICR , Peptidomimetics , Proto-Oncogene Mas , Structure-Activity Relationship
5.
PLoS One ; 8(12): e82970, 2013.
Article in English | MEDLINE | ID: mdl-24349408

ABSTRACT

Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4µM [~300 µg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 µM) and submicromolar (0.8 µM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.


Subject(s)
Air Pollutants/toxicity , Arsenic/toxicity , Blood-Air Barrier/metabolism , Environmental Exposure/adverse effects , Respiratory Mucosa/metabolism , Animals , Arsenites/adverse effects , Arsenites/pharmacology , Blood-Air Barrier/pathology , Cell Line, Transformed , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Humans , Mice , Occludin/metabolism , Phosphorylation/drug effects , Sodium Compounds/adverse effects , Sodium Compounds/pharmacology , Tight Junctions/metabolism , Tight Junctions/pathology
6.
FASEB J ; 27(4): 1498-510, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23292071

ABSTRACT

Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca(2+) response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2(-/-) cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.


Subject(s)
Calcium Signaling/drug effects , Lipid Metabolism/drug effects , Palmitates/pharmacology , Peptidomimetics/pharmacology , Receptor, PAR-2/agonists , Calcium/metabolism , Cell Line/drug effects , Humans , Hyperalgesia/drug therapy , Ligands , Ornithine/analogs & derivatives , Ornithine/pharmacology , Structure-Activity Relationship
7.
Toxicol Sci ; 132(1): 222-34, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23204110

ABSTRACT

Paracrine ATP signaling in the lung epithelium participates in a variety of innate immune functions, including mucociliary clearance, bactericide production, and as an initiating signal in wound repair. We evaluated the effects of chronic low-dose arsenic relevant to U.S. drinking water standards (i.e., 10 ppb [130nM]) on airway epithelial cells. Immortalized human bronchial epithelial cells (16HBE14o-) were exposed to 0, 130, or 330nM arsenic (as Na-arsenite) for 4-5 weeks and examined for wound repair efficiency and ATP-mediated Ca(2+) signaling. We found that chronic arsenic exposure at these low doses slows wound repair and reduces ATP-mediated Ca(2+) signaling. We further show that arsenic compromises ATP-mediated Ca(2+) signaling by altering both Ca(2+) release from intracellular stores (via metabotropic P2Y receptors) and Ca(2+) influx mechanisms (via ionotropic P2X receptors). To better model the effects of arsenic on ATP-mediated Ca(2+) signaling under conditions of natural exposure, we cultured tracheal epithelial cells obtained from mice exposed to control or 50 ppb Na-arsenite supplemented drinking water for 4 weeks. Tracheal epithelial cells from arsenic-exposed mice displayed reduced ATP-mediated Ca(2+) signaling dynamics similar to our in vitro chronic exposure. Our findings demonstrate that chronic arsenic exposure at levels that are commonly found in drinking water (i.e., 10-50 ppb) alters cellular mechanisms critical to airway innate immunity.


Subject(s)
Arsenic/toxicity , Bronchi/drug effects , Calcium Signaling/drug effects , Wound Healing/drug effects , Animals , Bronchi/cytology , Bronchi/metabolism , Cell Line, Transformed , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism
8.
Toxicol Sci ; 121(1): 191-206, 2011 May.
Article in English | MEDLINE | ID: mdl-21357385

ABSTRACT

Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca²+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., < 4 µM as Na-arsenite) on wound-induced Ca²+ signaling pathways in human bronchial epithelial cell line (16HBE14o-). We found that arsenic reduces purinergic Ca²+ signaling in a dose-dependent manner and results in a reshaping of the Ca²+ signaling response to localized wounds. We next examined arsenic effects on two purinergic receptor types: the metabotropic P2Y and ionotropic P2X receptors. Arsenic inhibited both P2Y- and P2X-mediated Ca²+ signaling responses to ATP. Both inhaled and ingested arsenic can rapidly reach the airway epithelium where purinergic signaling is essential in innate immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease.


Subject(s)
Adenosine Triphosphate/metabolism , Arsenic/toxicity , Bronchi/drug effects , Calcium Signaling , Bronchi/metabolism , Bronchi/pathology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Reverse Transcriptase Polymerase Chain Reaction
9.
Am J Physiol Lung Cell Mol Physiol ; 300(4): L605-14, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21296894

ABSTRACT

Allergens are diverse proteins from mammals, birds, arthropods, plants, and fungi. Allergens associated with asthma (asthmagens) share a common protease activity that may directly impact respiratory epithelial biology and lead to symptoms of asthma. Alternaria alternata is a strong asthmagen in semiarid regions. We examined the impact of proteases from A. alternata on lung inflammation in vivo and on cleaving protease-activated receptor-2 (PAR(2)) in vitro. A. alternata filtrate applied to the airway in nonsensitized Balb/c mice induced a protease-dependent lung inflammation. Moreover, A. alternata filtrate applied to human bronchial epithelial cells (16HBE14o-) induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)), consistent with PAR(2) activation. These effects were blocked by heat inactivation or by serine protease inhibition of A. alternata filtrates, and mimicked by PAR(2) specific ligands SLIGRL-NH(2) or 2-furoyl-LIGRLO-NH(2), but not the PAR(1)-specific ligand TFLLR-NH(2). Desensitization of PAR(2) in 16HBE14o- cells with 2-furoyl-LIGRLO-NH(2) or trypsin prevented A. alternata-induced [Ca(2+)](i) changes while desensitization of PAR(1), PAR(3), and PAR(4) with thrombin had no effect on A. alternata-induced Ca(2+) responses. Furthermore, the Ca(2+) response to A. alternata filtrates was dependent on PAR(2) expression in stably transfected HeLa cell models. These data demonstrate that A. alternata proteases act through PAR(2) to induce rapid increases in human airway epithelial [Ca(2+)](i) in vitro and cell recruitment in vivo. These responses are likely critical early steps in the development of allergic asthma.


Subject(s)
Alternaria/enzymology , Epithelial Cells/microbiology , Epithelial Cells/pathology , Pneumonia/immunology , Pneumonia/microbiology , Receptor, PAR-2/metabolism , Serine Proteases/immunology , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cell Movement/drug effects , Desensitization, Immunologic , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , HeLa Cells , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Lung/pathology , Lymphocytes/drug effects , Lymphocytes/immunology , Mice , Mice, Inbred BALB C , Pneumonia/pathology , Receptor, PAR-2/agonists , Receptor, PAR-2/genetics , Thrombin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...