Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Phys Med Biol ; 68(21)2023 10 18.
Article in English | MEDLINE | ID: mdl-37774711

ABSTRACT

Objective. Surgical guidewires are commonly used in placing fixation implants to stabilize fractures. Accurate positioning of these instruments is challenged by difficulties in 3D reckoning from 2D fluoroscopy. This work aims to enhance the accuracy and reduce exposure times by providing 3D navigation for guidewire placement from as little as two fluoroscopic images.Approach. Our approach combines machine learning-based segmentation with the geometric model of the imager to determine the 3D poses of guidewires. Instrument tips are encoded as individual keypoints, and the segmentation masks are processed to estimate the trajectory. Correspondence between detections in multiple views is established using the pre-calibrated system geometry, and the corresponding features are backprojected to obtain the 3D pose. Guidewire 3D directions were computed using both an analytical and an optimization-based method. The complete approach was evaluated in cadaveric specimens with respect to potential confounding effects from the imaging geometry and radiographic scene clutter due to other instruments.Main results. The detection network identified the guidewire tips within 2.2 mm and guidewire directions within 1.1°, in 2D detector coordinates. Feature correspondence rejected false detections, particularly in images with other instruments, to achieve 83% precision and 90% recall. Estimating the 3D direction via numerical optimization showed added robustness to guidewires aligned with the gantry rotation plane. Guidewire tips and directions were localized in 3D world coordinates with a median accuracy of 1.8 mm and 2.7°, respectively.Significance. The paper reports a new method for automatic 2D detection and 3D localization of guidewires from pairs of fluoroscopic images. Localized guidewires can be virtually overlaid on the patient's pre-operative 3D scan during the intervention. Accurate pose determination for multiple guidewires from two images offers to reduce radiation dose by minimizing the need for repeated imaging and provides quantitative feedback prior to implant placement.


Subject(s)
Fractures, Bone , Orthopedic Procedures , Surgery, Computer-Assisted , Humans , Orthopedic Procedures/methods , Surgery, Computer-Assisted/methods , Fractures, Bone/surgery , Fluoroscopy/methods , Imaging, Three-Dimensional/methods
2.
Article in English | MEDLINE | ID: mdl-37143861

ABSTRACT

Purpose: Existing methods to improve the accuracy of tibiofibular joint reduction present workflow challenges, high radiation exposure, and a lack of accuracy and precision, leading to poor surgical outcomes. To address these limitations, we propose a method to perform robot-assisted joint reduction using intraoperative imaging to align the dislocated fibula to a target pose relative to the tibia. Methods: The approach (1) localizes the robot via 3D-2D registration of a custom plate adapter attached to its end effector, (2) localizes the tibia and fibula using multi-body 3D-2D registration, and (3) drives the robot to reduce the dislocated fibula according to the target plan. The custom robot adapter was designed to interface directly with the fibular plate while presenting radiographic features to aid registration. Registration accuracy was evaluated on a cadaveric ankle specimen, and the feasibility of robotic guidance was assessed by manipulating a dislocated fibula in a cadaver ankle. Results: Using standard AP and mortise radiographic views registration errors were measured to be less than 1 mm and 1° for the robot adapter and the ankle bones. Experiments in a cadaveric specimen revealed up to 4 mm deviations from the intended path, which was reduced to <2 mm using corrective actions guided by intraoperative imaging and 3D-2D registration. Conclusions: Preclinical studies suggest that significant robot flex and tibial motion occur during fibula manipulation, motivating the use of the proposed method to dynamically correct the robot trajectory. Accurate robot registration was achieved via the use of fiducials embedded within the custom design. Future work will evaluate the approach on a custom radiolucent robot design currently under construction and verify the solution on additional cadaveric specimens.

3.
Phys Med Biol ; 68(1)2022 12 22.
Article in English | MEDLINE | ID: mdl-36317269

ABSTRACT

Purpose. Target localization in pulmonary interventions (e.g. transbronchial biopsy of a lung nodule) is challenged by deformable motion and may benefit from fluoroscopic overlay of the target to provide accurate guidance. We present and evaluate a 3D-2D image registration method for fluoroscopic overlay in the presence of tissue deformation using a multi-resolution/multi-scale (MRMS) framework with an objective function that drives registration primarily by soft-tissue image gradients.Methods. The MRMS method registers 3D cone-beam CT to 2D fluoroscopy without gating of respiratory phase by coarse-to-fine resampling and global-to-local rescaling about target regions-of-interest. A variation of the gradient orientation (GO) similarity metric (denotedGO') was developed to downweight bone gradients and drive registration via soft-tissue gradients. Performance was evaluated in terms of projection distance error at isocenter (PDEiso). Phantom studies determined nominal algorithm parameters and capture range. Preclinical studies used a freshly deceased, ventilated porcine specimen to evaluate performance in the presence of real tissue deformation and a broad range of 3D-2D image mismatch.Results. Nominal algorithm parameters were identified that provided robust performance over a broad range of motion (0-20 mm), including an adaptive parameter selection technique to accommodate unknown mismatch in respiratory phase. TheGO'metric yielded median PDEiso= 1.2 mm, compared to 6.2 mm for conventionalGO.Preclinical studies with real lung deformation demonstrated median PDEiso= 1.3 mm with MRMS +GO'registration, compared to 2.2 mm with a conventional transform. Runtime was 26 s and can be reduced to 2.5 s given a prior registration within ∼5 mm as initialization.Conclusions. MRMS registration via soft-tissue gradients achieved accurate fluoroscopic overlay in the presence of deformable lung motion. By driving registration via soft-tissue image gradients, the method avoided false local minima presented by bones and was robust to a wide range of motion magnitude.


Subject(s)
Imaging, Three-Dimensional , Surgery, Computer-Assisted , Animals , Swine , Imaging, Three-Dimensional/methods , Cone-Beam Computed Tomography/methods , Lung/diagnostic imaging , Surgery, Computer-Assisted/methods , Fluoroscopy/methods , Algorithms
4.
Article in English | MEDLINE | ID: mdl-36090307

ABSTRACT

Purpose: A method and prototype for a fluoroscopically-guided surgical robot is reported for assisting pelvic fracture fixation. The approach extends the compatibility of existing guidance methods with C-arms that are in mainstream use (without prior geometric calibration) using an online calibration of the C-arm geometry automated via registration to patient anatomy. We report the first preclinical studies of this method in cadaver for evaluation of geometric accuracy. Methods: The robot is placed over the patient within the imaging field-of-view and radiographs are acquired as the robot rotates an attached instrument. The radiographs are then used to perform an online geometric calibration via 3D-2D image registration, which solves for the intrinsic and extrinsic parameters of the C-arm imaging system with respect to the patient. The solved projective geometry is then be used to register the robot to the patient and drive the robot to planned trajectories. This method is applied to a robotic system consisting of a drill guide instrument for guidewire placement and evaluated in experiments using a cadaver specimen. Results: Robotic drill guide alignment to trajectories defined in the cadaver pelvis were accurate within 2 mm and 1° (on average) using the calibration-free approach. Conformance of trajectories within bone corridors was confirmed in cadaver by extrapolating the aligned drill guide trajectory into the cadaver pelvis. Conclusion: This study demonstrates the accuracy of image-guided robotic positioning without prior calibration of the C-arm gantry, facilitating the use of surgical robots with simpler imaging devices that cannot establish or maintain an offline calibration. Future work includes testing of the system in a clinical setting with trained orthopaedic surgeons and residents.

5.
Med Image Anal ; 68: 101917, 2021 02.
Article in English | MEDLINE | ID: mdl-33341493

ABSTRACT

PURPOSES: Surgical reduction of pelvic fracture is a challenging procedure, and accurate restoration of natural morphology is essential to obtaining positive functional outcome. The procedure often requires extensive preoperative planning, long fluoroscopic exposure time, and trial-and-error to achieve accurate reduction. We report a multi-body registration framework for reduction planning using preoperative CT and intraoperative guidance using routine 2D fluoroscopy that could help address such challenges. METHOD: The framework starts with semi-automatic segmentation of fractured bone fragments in preoperative CT using continuous max-flow. For reduction planning, a multi-to-one registration is performed to register bone fragments to an adaptive template that adjusts to patient-specific bone shapes and poses. The framework further registers bone fragments to intraoperative fluoroscopy to provide 2D fluoroscopy guidance and/or 3D navigation relative to the reduction plan. The framework was investigated in three studies: (1) a simulation study of 40 CT images simulating three fracture categories (unilateral two-body, unilateral three-body, and bilateral two-body); (2) a proof-of-concept cadaver study to mimic clinical scenario; and (3) a retrospective clinical study investigating feasibility in three cases of increasing severity and accuracy requirement. RESULTS: Segmentation of simulated pelvic fracture demonstrated Dice coefficient of 0.92±0.06. Reduction planning using the adaptive template achieved 2-3 mm and 2-3° error for the three fracture categories, significantly better than planning based on mirroring of contralateral anatomy. 3D-2D registration yielded ~2 mm and 0.5° accuracy, providing accurate guidance with respect to the preoperative reduction plan. The cadaver study and retrospective clinical study demonstrated comparable accuracy: ~0.90 Dice coefficient in segmentation, ~3 mm accuracy in reduction planning, and ~2 mm accuracy in 3D-2D registration. CONCLUSION: The registration framework demonstrated planning and guidance accuracy within clinical requirements in both simulation and clinical feasibility studies for a broad range of fracture-dislocation patterns. Using routinely acquired preoperative CT and intraoperative fluoroscopy, the framework could improve the accuracy of pelvic fracture reduction, reduce radiation dose, and could integrate well with common clinical workflow without the need for additional navigation systems.


Subject(s)
Orthopedics , Surgery, Computer-Assisted , Body Image , Fluoroscopy , Fracture Fixation , Humans , Imaging, Three-Dimensional , Retrospective Studies , Tomography, X-Ray Computed
6.
Eur Cell Mater ; 40: 38-57, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32696976

ABSTRACT

Surgical site infections after orthopaedic surgery using fracture fixation devices or endosseous implants create major surgical challenges with severe adverse effects, such as osteomyelitis. These infections are frequently caused by Staphylococcus aureus, often with high resistance to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). Due to the formation of impenetrable biofilms on implant surfaces, systemic antibiotic treatment has become exceedingly difficult. New solutions are pursued by combining several drugs using a controlled delivery system from specifically engineered implant surfaces. A sol-gel coating on titanium implants was previously developed with 20 wt % vancomycin and 30 wt % farnesol, with suppression of MRSA in vitro. The present study investigated the efficacy of sol-gel film coatings for controlled dual local delivery over 4 weeks utilising a rat infection model. The findings confirmed the viability of this new concept in vivo based on the differences observed between coatings containing vancomycin alone (SGV) and the dual-drug-containing coating with vancomycin and farnesol (SGVF). While both the SGVF and SGV coatings facilitated excellent preservation of the osseous microarchitecture, SGVF coating displayed a slightly higher potency for suppressing MRSA infiltration than SGV, in combination with a lower reactive bone remodelling activity, most likely by disturbing biofilm formation. The next step for advancing the concept of dual-drug delivery from sol-gel coatings to the clinic and confirming the promising effect of the SGVF coatings on reactive bone remodelling and suppressing MRSA infiltration is a study in a larger animal species with longer time points.


Subject(s)
Drug Delivery Systems , Farnesol/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Vancomycin/pharmacology , Animals , Bone and Bones/diagnostic imaging , Bone and Bones/microbiology , Bone and Bones/pathology , Coated Materials, Biocompatible/pharmacology , Farnesol/administration & dosage , Farnesol/therapeutic use , Male , Pilot Projects , Rats, Sprague-Dawley , Staphylococcal Infections/diagnostic imaging , Vancomycin/administration & dosage , Vancomycin/therapeutic use , X-Ray Microtomography
7.
Article in English | MEDLINE | ID: mdl-32476703

ABSTRACT

Pelvic trauma surgical procedures rely heavily on guidance with 2D fluoroscopy views for navigation in complex bone corridors. This "fluoro-hunting" paradigm results in extended radiation exposure and possible suboptimal guidewire placement from limited visualization of the fractures site with overlapped anatomy in 2D fluoroscopy. A novel computer vision-based navigation system for freehand guidewire insertion is proposed. The navigation framework is compatible with the rapid workflow in trauma surgery and bridges the gap between intraoperative fluoroscopy and preoperative CT images. The system uses a drill-mounted camera to detect and track poses of simple multimodality (optical/radiographic) markers for registration of the drill axis to fluoroscopy and, in turn, to CT. Surgical navigation is achieved with real-time display of the drill axis position on fluoroscopy views and, optionally, in 3D on the preoperative CT. The camera was corrected for lens distortion effects and calibrated for 3D pose estimation. Custom marker jigs were constructed to calibrate the drill axis and tooltip with respect to the camera frame. A testing platform for evaluation of the navigation system was developed, including a robotic arm for precise, repeatable, placement of the drill. Experiments were conducted for hand-eye calibration between the drill-mounted camera and the robot using the Park and Martin solver. Experiments using checkerboard calibration demonstrated subpixel accuracy [-0.01 ± 0.23 px] for camera distortion correction. The drill axis was calibrated using a cylindrical model and demonstrated sub-mm accuracy [0.14 ± 0.70 mm] and sub-degree angular deviation.

8.
Phys Med Biol ; 65(16): 165012, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32428891

ABSTRACT

Metal artifacts present a challenge to cone-beam CT (CBCT) image-guided surgery, obscuring visualization of metal instruments and adjacent anatomy-often in the very region of interest pertinent to the imaging/surgical tasks. We present a method to reduce the influence of metal artifacts by prospectively defining an image acquisition protocol-viz., the C-arm source-detector orbit-that mitigates metal-induced biases in the projection data. The metal artifact avoidance (MAA) method is compatible with simple mobile C-arms, does not require exact prior information on the patient or metal implants, and is consistent with 3D filtered backprojection (FBP), more advanced (e.g. polyenergetic) model-based image reconstruction (MBIR), and metal artifact reduction (MAR) post-processing methods. The MAA method consists of: (i) coarse localization of metal objects in the field-of-view (FOV) via two or more low-dose scout projection views and segmentation (e.g. a simple U-Net) in coarse backprojection; (ii) model-based prediction of metal-induced x-ray spectral shift for all source-detector vertices accessible by the imaging system (e.g. gantry rotation and tilt angles); and (iii) identification of a circular or non-circular orbit that reduces the variation in spectral shift. The method was developed, tested, and evaluated in a series of studies presenting increasing levels of complexity and realism, including digital simulations, phantom experiment, and cadaver experiment in the context of image-guided spine surgery (pedicle screw implants). The MAA method accurately predicted tilted circular and non-circular orbits that reduced the magnitude of metal artifacts in CBCT reconstructions. Realistic distributions of metal instrumentation were successfully localized (0.71 median Dice coefficient) from 2-6 low-dose scout views even in complex anatomical scenes. The MAA-predicted tilted circular orbits reduced root-mean-square error (RMSE) in 3D image reconstructions by 46%-70% and 'blooming' artifacts (apparent width of the screw shaft) by 20-45%. Non-circular orbits defined by MAA achieved a further ∼46% reduction in RMSE compared to the best (tilted) circular orbit. The MAA method presents a practical means to predict C-arm orbits that minimize spectral bias from metal instrumentation. Resulting orbits-either simple tilted circular orbits or more complex non-circular orbits that can be executed with a motorized multi-axis C-arm-exhibited substantial reduction of metal artifacts in raw CBCT reconstructions by virtue of higher fidelity projection data, which are in turn compatible with subsequent MAR post-processing and/or polyenergetic MBIR to further reduce artifacts.


Subject(s)
Cone-Beam Computed Tomography/instrumentation , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Metals/chemistry , Phantoms, Imaging , Spine/surgery , Surgery, Computer-Assisted/methods , Algorithms , Artifacts , Humans , Imaging, Three-Dimensional/methods , Pedicle Screws , Spine/diagnostic imaging
9.
Phys Med Biol ; 65(13): 135009, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32217833

ABSTRACT

Surgical reduction of pelvic dislocation is a challenging procedure with poor long-term prognosis if reduction does not accurately restore natural morphology. The procedure often requires long fluoroscopic exposure times and trial-and-error to achieve accurate reduction. We report a method to automatically compute the target pose of dislocated bones in preoperative CT and provide 3D guidance of reduction using routine 2D fluoroscopy. A pelvic statistical shape model (SSM) and a statistical pose model (SPM) were formed from an atlas of 40 pelvic CT images. Multi-body bone segmentation was achieved by mapping the SSM to a preoperative CT via an active shape model. The target reduction pose for the dislocated bone is estimated by fitting the poses of undislocated bones to the SPM. Intraoperatively, multiple bones are registered to fluoroscopy images via 3D-2D registration to obtain 3D pose estimates from 2D images. The method was examined in three studies: (1) a simulation study of 40 CT images simulating a range of dislocation patterns; (2) a pelvic phantom study with controlled dislocation of the left innominate bone; (3) a clinical case study investigating feasibility in images acquired during pelvic reduction surgery. Experiments investigated the accuracy of registration as a function of initialization error (capture range), image quality (radiation dose and image noise), and field of view (FOV) size. The simulation study achieved target pose estimation with translational error of median 2.3 mm (1.4 mm interquartile range, IQR) and rotational error of 2.1° (1.3° IQR). 3D-2D registration yielded 0.3 mm (0.2 mm IQR) in-plane and 0.3 mm (0.2 mm IQR) out-of-plane translational error, with in-plane capture range of ±50 mm and out-of-plane capture range of ±120 mm. The phantom study demonstrated 3D-2D target registration error of 2.5 mm (1.5 mm IQR), and the method was robust over a large dose range, down to 5 [Formula: see text]Gy/frame (an order of magnitude lower than the nominal fluoroscopic dose). The clinical feasibility study demonstrated accurate registration with both preoperative and intraoperative radiographs, yielding 3.1 mm (1.0 mm IQR) projection distance error with robust performance for FOV ranging from 340 × 340 mm2 to 170 × 170 mm2 (at the image plane). The method demonstrated accurate estimation of the target reduction pose in simulation, phantom, and a clinical feasibility study for a broad range of dislocation patterns, initialization error, dose levels, and FOV size. The system provides a novel means of guidance and assessment of pelvic reduction from routinely acquired preoperative CT and intraoperative fluoroscopy. The method has the potential to reduce radiation dose by minimizing trial-and-error and to improve outcomes by guiding more accurate reduction of joint dislocations.


Subject(s)
Imaging, Three-Dimensional/methods , Joint Dislocations/diagnostic imaging , Joint Dislocations/surgery , Orthopedic Procedures , Pelvis/injuries , Pelvis/surgery , Surgery, Computer-Assisted , Algorithms , Fluoroscopy , Humans , Phantoms, Imaging
10.
Article in English | MEDLINE | ID: mdl-36082206

ABSTRACT

Purpose: We report the initial development of an image-based solution for robotic assistance of pelvic fracture fixation. The approach uses intraoperative radiographs, preoperative CT, and an end effector of known design to align the robot with target trajectories in CT. The method extends previous work to solve the robot-to-patient registration from a single radiographic view (without C-arm rotation) and addresses the workflow challenges associated with integrating robotic assistance in orthopaedic trauma surgery in a form that could be broadly applicable to isocentric or non-isocentric C-arms. Methods: The proposed method uses 3D-2D known-component registration to localize a robot end effector with respect to the patient by: (1) exploiting the extended size and complex features of pelvic anatomy to register the patient; and (2) capturing multiple end effector poses using precise robotic manipulation. These transformations, along with an offline hand-eye calibration of the end effector, are used to calculate target robot poses that align the end effector with planned trajectories in the patient CT. Geometric accuracy of the registrations was independently evaluated for the patient and the robot in phantom studies. Results: The resulting translational difference between the ground truth and patient registrations of a pelvis phantom using a single (AP) view was 1.3 mm, compared to 0.4 mm using dual (AP+Lat) views. Registration of the robot in air (i.e., no background anatomy) with five unique end effector poses achieved mean translational difference ~1.4 mm for K-wire placement in the pelvis, comparable to tracker-based margins of error (commonly ~2 mm). Conclusions: The proposed approach is feasible based on the accuracy of the patient and robot registrations and is a preliminary step in developing an image-guided robotic guidance system that more naturally fits the workflow of fluoroscopically guided orthopaedic trauma surgery. Future work will involve end-to-end development of the proposed guidance system and assessment of the system with delivery of K-wires in cadaver studies.

11.
Med Phys ; 47(3): 958-974, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31863480

ABSTRACT

PURPOSE: To characterize the radiation dose and three-dimensional (3D) imaging performance of a recently developed mobile, isocentric C-arm equipped with a flat-panel detector (FPD) for intraoperative cone-beam computed tomography (CBCT) (Cios Spin 3D, Siemens Healthineers) and to identify potential improvements in 3D imaging protocols for pertinent imaging tasks. METHODS: The C-arm features a 30 × 30 cm2 FPD and isocentric gantry with computer-controlled motorization of rotation (0-195°), angulation (±220°), and height (0-45 cm). Geometric calibration was assessed in terms of 9 degrees of freedom of the x-ray source and detector in CBCT scans, and the reproducibility of geometric calibration was evaluated. Standard and custom scan protocols were evaluated, with variation in the number of projections (100-400) and mAs per view (0.05-1.65 mAs). Image reconstruction was based on 3D filtered backprojection using "smooth," "normal," and "sharp" reconstruction filters as well as a custom, two-dimensional 2D isotropic filter. Imaging performance was evaluated in terms of uniformity, gray value correspondence with Hounsfield units (HU), contrast, noise (noise-power spectrum, NPS), spatial resolution (modulation transfer function, MTF), and noise-equivalent quanta (NEQ). Performance tradeoffs among protocols were visualized in anthropomorphic phantoms for various anatomical sites and imaging tasks. RESULTS: Geometric calibration showed a high degree of reproducibility despite ~19 mm gantry flex over a nominal semicircular orbit. The dose for a CBCT scan varied from ~0.8-4.7 mGy for head protocols to ~6-38 mGy for body protocols. The MTF was consistent with sub-mm spatial resolution, with f10 (frequency at which MTF = 10%) equal to 0.64 mm-1 , 1.0 mm-1 , and 1.5 mm-1 for smooth, standard, and sharp filters respectively. Implementation of a custom 2D isotropic filter improved CNR ~ 50-60% for both head and body protocols and provided more isotropic resolution and noise characteristics. The NPS and NEQ quantified the 3D noise performance and provided a guide to protocol selection, confirmed in images of anthropomorphic phantoms. Alternative scan protocols were identified according to body site and task - for example, lower-dose body protocols (<3 mGy) sufficient for visualization of bone structures. CONCLUSION: The studies provided objective assessment of the dose and 3D imaging performance of a new C-arm, offering an important basis for clinical deployment and a benchmark for quality assurance. Modifications to standard 3D imaging protocols were identified that may improve performance or reduce radiation dose for pertinent imaging tasks.


Subject(s)
Cone-Beam Computed Tomography/instrumentation , Imaging, Three-Dimensional , Radiation Dosage , Fluoroscopy , Humans , Intraoperative Period , Phantoms, Imaging
12.
Phys Med Biol ; 63(21): 215016, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30372418

ABSTRACT

Real-time fusion of magnetic resonance (MR) and ultrasound (US) images could facilitate safe and accurate needle placement in spinal interventions. We develop an entirely image-based registration method (independent of or complementary to surgical trackers) that includes an efficient US probe pose initialization algorithm. The registration enables the simultaneous display of 2D ultrasound image slices relative to 3D pre-procedure MR images for navigation. A dictionary-based 3D-2D pose initialization algorithm was developed in which likely probe positions are predefined in a dictionary with feature encoding by Haar wavelet filters. Feature vectors representing the 2D US image are computed by scaling and translating multiple Haar basis filters to capture scale, location, and relative intensity patterns of distinct anatomical features. Following pose initialization, fast 3D-2D registration was performed by optimizing normalized cross-correlation between intra- and pre-procedure images using Powell's method. Experiments were performed using a lumbar puncture phantom and a fresh cadaver specimen presenting realistic image quality in spinal US imaging. Accuracy was quantified by comparing registration transforms to ground truth motion imparted by a computer-controlled motion system and calculating target registration error (TRE) in anatomical landmarks. Initialization using a 315-length feature vector yielded median translation accuracy of 2.7 mm (3.4 mm interquartile range, IQR) in the phantom and 2.1 mm (2.5 mm IQR) in the cadaver. By comparison, storing the entire image set in the dictionary and optimizing correlation yielded a comparable median accuracy of 2.1 mm (2.8 mm IQR) in the phantom and 2.9 mm (3.5 mm IQR) in the cadaver. However, the dictionary-based method reduced memory requirements by 47× compared to storing the entire image set. The overall 3D error after registration measured using 3D landmarks was 3.2 mm (1.8 mm IQR) mm in the phantom and 3.0 mm (2.3 mm IQR) mm in the cadaver. The system was implemented in a 3D Slicer interface to facilitate translation to clinical studies. Haar feature based initialization provided accuracy and robustness at a level that was sufficient for real-time registration using an entirely image-based method for ultrasound navigation. Such an approach could improve the accuracy and safety of spinal interventions in broad utilization, since it is entirely software-based and can operate free from the cost and workflow requirements of surgical trackers.


Subject(s)
Image Processing, Computer-Assisted/methods , Spine/diagnostic imaging , Spine/surgery , Surgery, Computer-Assisted , Algorithms , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Ultrasonography
13.
Bone Joint J ; 100-B(7): 909-914, 2018 07.
Article in English | MEDLINE | ID: mdl-29954194

ABSTRACT

Aims The aim of this study was to examine the results of the acetabular distraction technique in achieving implantation of a stable construct, obtaining biological fixation, and producing healing of chronic pelvic discontinuity at revision total hip arthroplasty. Patients and Methods We identified 32 patients treated between 2006 and 2013 who underwent acetabular revision for a chronic pelvic discontinuity using acetabular distraction, and who were radiographically evaluated at a mean of 62 months (25 to 160). Of these patients, 28 (87.5%) were female. The mean age at the time of revision was 67 years (44 to 86). The patients represented a continuous series drawn from two institutions that adhered to an identical operative technique. Results Of the 32 patients, one patient required a revision for aseptic loosening, two patients had evidence of radiographic loosening but were not revised, and three patients had migration of the acetabular component into a more stable configuration. Radiographically, 22 (69%) of the cohort demonstrated healing of the discontinuity. The Kaplan-Meier construct survivorship was 83.3% when using revision for aseptic acetabular loosening as an endpoint. At the time when one patient failed due to aseptic loosening (at 7.4 years), there were a total of seven patients with a follow-up of seven years or longer who were at risk of failure. Conclusion The acetabular distraction technique demonstrates encouraging radiographic outcomes, with healing of the discontinuity in over two-thirds of our series. This surgical technique permits biological fixation and intraoperative customization of the construct to be implanted based on the pattern of the bone loss identified following component removal. Cite this article: Bone Joint J 2018;100-B:909-14.


Subject(s)
Acetabulum/surgery , Arthroplasty, Replacement, Hip/adverse effects , Hip Prosthesis/adverse effects , Osteogenesis, Distraction/methods , Reoperation/methods , Adult , Aged , Aged, 80 and over , Arthroplasty, Replacement, Hip/methods , Female , Follow-Up Studies , Hip Joint/surgery , Humans , Male , Middle Aged , Osteogenesis, Distraction/adverse effects , Pelvis/surgery , Prosthesis Design , Prosthesis Failure , Reoperation/adverse effects , Retrospective Studies , Survival Analysis , Survivorship
14.
Bone Joint J ; 100-B(7): 903-908, 2018 07.
Article in English | MEDLINE | ID: mdl-29954197

ABSTRACT

Aims: The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky IIIA and IIIB defects. Patients and Methods: A retrospective study was conducted at four centres between August 2008 and January 2015. Patients treated with TM augments and TM shell for a Paprosky grade IIIA or IIIB defect, in the absence of pelvic discontinuity, and who underwent revision hip arthroplasty with the use of TM augments were included in the study. A total of 41 patients with minimum follow-up of two years were included and evaluated using intention-to-treat analysis. Results: There were 36 (87.8%) patients with a Paprosky IIIA defect and five (12.2%) patients with a Paprosky IIIB defect. The mean age was 56.7 years (28 to 94). There were 21 (51.2%) women and 20 (48.8%) men. The mean follow-up was 39.4 months (12 to 96). One (2%) patient died after eight years. No failures were noted in the series. The mean survivorship was 100% at the time of latest follow-up. Conclusion: The results of this multicentre study showed encouraging short- and mid-term results for the use of TM augments in the management of Paprosky grade IIIA and IIIB defects. Cite this article: Bone Joint J 2018;100-B:903-8.


Subject(s)
Acetabulum/surgery , Arthroplasty, Replacement, Hip/methods , Hip Prosthesis/adverse effects , Reoperation/methods , Adult , Aged , Aged, 80 and over , Arthroplasty, Replacement, Hip/adverse effects , Female , Follow-Up Studies , Hip Joint/surgery , Humans , Male , Metals/adverse effects , Middle Aged , Prosthesis Design/adverse effects , Prosthesis Failure , Retrospective Studies , Treatment Outcome
15.
Bone Joint J ; 98-B(1 Suppl A): 44-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26733640

ABSTRACT

Given the increasing number of total hip arthroplasty procedures being performed annually, it is imperative that orthopaedic surgeons understand factors responsible for instability. In order to treat this potentially complex problem, we recommend correctly classifying the type of instability present based on component position, abductor function, impingement, and polyethylene wear. Correct classification allows the treating surgeon to choose the appropriate revision option that ultimately will allow for the best potential outcome.


Subject(s)
Hip Prosthesis/adverse effects , Joint Instability/etiology , Prosthesis Failure , Chronic Disease , Humans , Joint Instability/diagnosis , Joint Instability/therapy , Preoperative Care , Prosthesis Design
16.
J Pharm Bioallied Sci ; 7(2): 156-9, 2015.
Article in English | MEDLINE | ID: mdl-25883521

ABSTRACT

BACKGROUND: The presence of potentially active nutrients and their multifunctional properties make prickly pear a perfect candidate for the production of phytopharmaceutical products. Among the numerous Opuntia species, bioactive compounds have been isolated and characterized primarily from Opuntia ficus-indica, Opuntia polycantha, Opuntia stricta, Opuntia dilleni for various medicinal properties. OBJECTIVE: Based on the traditional use of prickly pear for enhancement of immune function, the objective of the present study to evaluate the effect of prickly pear on mast cell degranulation function. MATERIALS AND METHODS: The Opuntia fruit juice (OFJ) (10-200 µl/ml) were studied for the effect on sensitized rat peritoneal mast cell degranulation induced by immunological (egg albumin), and nonimmunological (compound 48/80) stimuli and compared with that of the reference standard, sodium cromoglycate and ketotifen (10 µg/ml). RESULTS AND CONCLUSION: The OFJ exhibited significantly (P < 0.001) concentration dependent inhibition of mast cell degranulation. The IC50 value of OFJ was found 12.24 and 18 µl/ml for immunological and nonimmunological induced mast cell degranulation, respectively. The betacyanin is an active principle compound in prickly pear that may responsible for mast cell stabilizing action.

17.
Bone Joint J ; 96-B(11 Supple A): 36-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25381406

ABSTRACT

Acetabular bone loss is a challenging problem facing the revision total hip replacement surgeon. Reconstruction of the acetabulum depends on the presence of anterosuperior and posteroinferior pelvic column support for component fixation and stability. The Paprosky classification is most commonly used when determining the location and degree of acetabular bone loss. Augments serve the function of either providing primary construct stability or supplementary fixation. When a pelvic discontinuity is encountered we advocate the use of an acetabular distraction technique with a jumbo cup and modular porous metal acetabular augments for the treatment of severe acetabular bone loss and associated chronic pelvic discontinuity.


Subject(s)
Acetabulum/surgery , Arthroplasty, Replacement, Hip/methods , Bone Diseases, Metabolic/surgery , Pelvic Bones/surgery , Acetabulum/diagnostic imaging , Bone Diseases, Metabolic/diagnostic imaging , Hip Prosthesis , Humans , Pelvic Bones/diagnostic imaging , Prosthesis Design , Prosthesis Failure , Radiography , Reoperation
18.
Comput Aided Surg ; 19(1-3): 1-12, 2014.
Article in English | MEDLINE | ID: mdl-24784842

ABSTRACT

Optical coherence tomography (OCT) has been shown to be of clinical value in imaging basal cell carcinoma (BCC). A novel dual OCT-video imaging system, providing automated registration of OCT and dermoscopy, has been developed to assess the potential of OCT in measuring the degree of sub-clinical spread of BCC. Seventeen patients selected for Mohs micrographic surgery (MMS) for BCC were recruited to the study. The extent of BCC infiltration beyond a segment of the clinically assessed pre-surgical border was evaluated using OCT. Sufficiently accurate (<0.5 mm) registration of OCT and dermoscopy images was achieved in 9 patients. The location of the OCT-assessed BCC border was also compared with that of the final surgical defect. Infiltration of BCC across the clinical border ranged from 0 mm to >2.5 mm. In addition, the OCT border lay between 0.5 mm and 2.0 mm inside the final MMS defect in those cases where this could be assessed. In one case, where the final MMS defect was over 17 mm from the clinical border, OCT showed >2.5 mm infiltration across the clinical border at the FOV limit. These results provide evidence that OCT allows more accurate assessment of sub-clinical spread of BCC than clinical observation alone. Such a capability may have clinical value in reducing the number of surgical stages in MMS for BCC. There may also be a role for OCT in aiding the selection of patients most suitable for MMS.


Subject(s)
Carcinoma, Basal Cell/pathology , Dermoscopy , Imaging, Three-Dimensional , Skin Neoplasms/pathology , Tomography, Optical Coherence , Aged , Aged, 80 and over , Carcinoma, Basal Cell/surgery , Female , Humans , Male , Middle Aged , Mohs Surgery , Preoperative Period , Skin Neoplasms/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...